
Rekall Unbound

Mike Richardson

Rekall Unbound
by Mike Richardson

Table of Contents
1. Introduction ...9
2. Overview and Tour ...11

Accessing a Database Server ..11
The Rekall Database File ...11
SDI or MDI: That is the Question...11
The Rekall Server Dialog...12
Viewing Tables..13
Forms ...14
Rekall Queries...16
Reports ...17

3. Connecting to Database Servers ..19
The Server Dialog...19
The !Files Entry...20
The Rekall Objects and Design Tables...22
And Now, the Real Thing ...22

4. Accessing Tables with Rekall...23
Data Types in Rekall and Servers...23
Designing and Altering Tables ...24
Viewing and Updating Data in Tables ..27
Other Table Design Settings..28
Some Miscellanea ...30

5. Designing and Using Forms ...31
Creating a Form..31

Creating a New Form: The Form Dialog...31
Creating a New Form: The Query Dialog...32
Creating a New Form: The Block Dialog ..33
Adding Controls to the Form..34
Positioning Controls...37
Saving and Showing the Form..38
Adding Navigation Buttons..38
Some Magic: Enabling and Disabling Navigation Buttons39

Creating a Form with a SubForm...40
Containers and Stretchable Forms...43
Form Navigation ..44
Menu-Only Forms..47

6. Queries..49
Creating Queries...49
Joins: Inner, Outer and none...53
Using a Query in Forms and Reports..53
Free-Text Queries..54

7. Designing and using Reports...57
Creating a Report ...57
Printers and Printing ...61
Design View, Data View, Print and Preview ..62

8. The Structure of Forms and Reports ...65
Form Controls ...65

Field ..65
Memo..65
Choice...65

5

Link...66
Pixmap..66
Check ..66
Rich Text...67
Row Mark ..67
Label ...67
Button ...67
Tab Control ..67
Container ...68

Report Controls ..68
Field ..68
Link...69
Pixmap..69
Summary..69
Label ...69
Headers and Footers ..69

Forms and Reports are Trees ..69
Objects are Classes ...70
KBNodes, KBObjects and KBItems..71

KBNode..71
KBObject ..71
KBItem..71

KBBlock and Friends ...72
Data Controls ..73
Containers: KBHeader, KBFooter, KBContainer, KBTabberPage73
Forms and Reports ...74
Properties...74
Common Properties ...74

Notes...74
X-Position, Y-Position, Width and Height (x, y, w, h)..................................75
X-mode and Y-mode (xmode, ymode) ..75
Control name (name) ...75
Background Colour (bgcolor) ...76
Frame Style (frame) ..76
Text Colour (fgcolor) ..76
Display Expression (expr) ...76

Data-Related Properties ..76
Row Count (rowcount) ..76
X and Y Spacing (dx, dy) ...77
Default Value (defval) ..77
Null OK (nullok)...77
Validator (evalid) ..77
Ignore Case (igncase) ...77
Read Only (rdonly)...77
Format (format)...78
Text Alignment (align) ...78
Input Mask (mask) ...78

Block Properties..78
Show Scroll Bar (showbar) ..78
Parent/Child (master, child) ...79

Form Properties ..79
Streatchable (stretch) ..79
Scripting Language (language)...79
Form Caption (caption)..79
Script Modules ..80
Import Modules ..80

6

Report Properties..80
Margins (lmargin, rmargin, tmargin, bmargin) ...80
Printer (printer)...80
Show Print Dialog (printdlg) ..80

9. Scripting with Python..83
Introduction to Scripting...83

Events ...83
Expressions ..84
Modules..84

An Aside: Query Rows..85
Examples ...85

Record Navigation the Proper Way ...85
Locking Fields ...87
Roll Your Own Form ..87

Object Events ..88
Button Events ..88
Item Events ..89
Block Events ..90
Form Events...93

Manipulating Objects ..93
KBObject Methods...94
KBItem Methods ..97
Containers Methods ...98
KBButton Methods ..99
KBLabel Methods...99
Tabber and Tabber Page Methods ..99
KBForm Methods...100

Python Scripting Help ...101
10. The Python Debugger..103

Breakpoints..104
Exceptions ...104

11. Executing SQL from Python Scripts..107
Connecting to the server database...107
Using a cursor ...107
The RekallPYDBI Code..108

12. Import and Export: The Copier ..109
The Copier ...109
Copier Sources ..111

File...111
Table..111
Arbitrary SQL..112

Copier Destinations ...112
File...112
Table..112
XML ..112

13. Executing Forms and Report with Parameters ..115
Using Parameters ...115
Setting up for User Entry ..115
User Input..116
Passing Parameters via Scripts...116
Opening Forms and Reports ..117
Parameter Passing: An End-Note ..118

A. Primary and Unique Key Columns..119
Identifying Rows in Tables ...119

7

Tables Created by Rekall ...119
Accessing Extant Tables ..119
Specifiying Unique Key Columns..120
Key Generator Functions ..120

B. Database Drivers ..121
MySQL ...121
PostgreSQL..121
XBase ..121

C. The XBase interface ...123
D. Object Properties ...125

Form Properties ..125
Form Block Properties ...126
Report Properties..128
Report Block Properties...129
Block Header...130
Block Footer...130
Tabber...131
TabberPage ..131
Button Properties..132
Label ...133
CheckBox...134
Choice ..135
Link...137
Field..139
Memo ...142
Pixmap ...143
Summary ...145
RowMark...146
RichText ...148
Table Query ...149
Rekall Query ..150
Free-text SQL Query ..151

E. Object Methods ..153
Block Methods ..153
Button Methods ..153
Choice (ComboBox) Methods...153
Form Methods...154
Container Methods ..155
Item Methods..155
Label Methods ..156
Object Methods...156
Tabber Page Methods ..157
RekallMain functions...158

F. tkcRekall: Rekall on the Sharp Zaurus ..159
Right-Click Operation ...159
Menus and Toolbars...159
Dialog Layouts..159
Table Design..159
Query Design ..159
Copier Design ...160

8

Chapter 1. Introduction

Welcome to Rekall. Rekall is a database front end 1 to a range of SQL database servers.

This manual applies to verion 1.0.5 of Rekall, but Rekall is in continuous development,
so if there is a feture which you would like to see included, please let us know! The
current version includes:

• Access to MySQL and PostgreSQL databases. It can also access XBase files with a
restricted set of SQL. Further SQL database servers will be added in the future. A
single Rekall "database" can access one or more SQL databases.

• Access to the underlying database types. As of version 1.0.5, Rekall provides access
to almost all the types which the SQL database servers provide (XBase is rather
restricitve in this respect).

• Table design, and changes in design, plus the ability to view and update table data.
Common functionality can be accessed, such as single column indexing (although
this area needs extending, for instance to provide multiple-column indexes).

• Form and report design and execution. Forms and reports can access data directly
from database tables, via arbitrary SQL (subject to the restriction that Rekall can
parse it) or from queries which are defined in Rekall; both can contain arbitrarily
nested sub-forms (or sub-reports).

• Scripting using the python language. An interface to Rekall itself and to the SQL
database servers is provided (so that the scripts can control form and report ex-
ecution, and can access data in the database). Rekall also contains an interactive
python debugger. Of course, you also have full access to whatever python modules
are available on your system.

• Import and export of table data in a range of formats. In fact, Rekall generalises this
as a copy operation, where the copy source and destinations can include database
tables, SQL queries and text files.

The next chapter provides an overview of Rekall, and takes you on a tour of Rekall’s
facilities for accessing tables, forms and reports. The examples are drawn from the
sample demonstration databases which are available from the same places as Rekall
itself.

All the screenshots in this manual are taken from Rekall running under KDE. The
QT3-only version is identical, except for things like control styles. The Zaurus version
is also similar, except that the dialogs are generally more compact, and various other
tricks are employed to reduce the amount of screen space that is needed.

Please be aware that this manual is not intended as a tutorial or manual for SQL
databases, but assumes at least a basic knowledge of such databases. In places, there
are descriptions of how SQL databases work, but these descriptions are intended to
provide context rather than information. There are any number of books available on
database technology ans the SQL query language, and lots of resources available on
the Web.

We hope that you will find Rekall a useful and powerful tool. We welcome all feed-
back, both complimentary and critical. Complimentary feedback is nice, obviously,
but critical feedback points us in directions that users would like to see us going in,
rather than directions that we only think users would like.

9

Chapter 1. Introduction

Notes
1. In the manner of Microsoft Access®

10

Chapter 2. Overview and Tour

This chapter introduces Rekall, and shows how Rekall accesses tables, forms and re-
ports. The examples in this chapter are drawn from the demonstration Orders database.
This is a simple database containing information about clients, products and clients’
orders for products.

The sections in this chapter on tables, forms, and so forth, present an overview of their
use to manipulate and display data in the server database; Rekall’s corresponding
design functions are described in the appropriate chapter, and are not covered here.

Accessing a Database Server
Rekall itself does not contain a database. Rather, it can access SQL databases such
as MySQL and PostgreSQL via drivers. Since Rekall is really intended as a general-
purpose front-end to these, it does not handle functions such as database creation
and access control (although plugin modules to support specific SQL databases may
become available).

Because of this, it is neccessary to set up a database which Rekall can use. The Orders
database can be run on MySQL, PostgreSQL and XBase; there are instructions included
which describe how to set up the database. If you use the XBase version you do not
need access to any shared resources, but to run the MySQL or PostgreSQL versions
you will need access to a corresponding server to which you have access.

A few words are needed to avoid confusion over the use of the word database. We
will use it in two ways. Firstly, it is used to refer to a RDBMSs (Relational Database
Management Systems) such as MySQL; the term server database will be used where
needed to avoid ambiguity. Secondly, it is used to refer to the thing that a Rekall user
will think of as a logically single database; here the term Rekall database will be used.
Note that a Rekall database can access more than one server database.

The Rekall Database File
Rekall uses a single file to contain information about a Rekall database. This file con-
tains information about where the database resides (for instance, the location, user-
name and password for a MySQL database), but it does not store any actual data, nor
does it contain information such as form or report definitions. Data is always stored
in the server database, while forms and reports (and suchlike) are stored either in the
server database or in files in the same directory as the information file. This file will
normally have the extension .rkl, but for historical reasons the extension .kdb can be
used.

Content-wise, the files have the same format, and are interchangable. Up to Rekall
version 1.0.4 the data is stored in bar-separated format; from 1.0.5 is it stored in XML.
In either case, you can look at it (or edit it, if you feel confident and want to move
databases about). By the way, all Rekall objects, such as forms and reports, are stored
as text files, usually XML, and can be viewed and edited; you could, for instance,
write a program which dynamically generates a report definition.

As noted above, forms and reports, etc., can be stored either in a server database, or
in the same directory as the information file. In the latter case, the files have names
like myform.xxx.frm where xxx is the same as the Rekall information file extension 1

11

Chapter 2. Overview and Tour

SDI or MDI: That is the Question
Users coming from the Windows® world, particularly Access, will be familiar with
the MDI model, where an application opens multiple document windows as children
of a main application window. Those from the Unix® world will likely be more famil-
iar with the SDI model, where an application opens separate documents in multiple
top-level windows. 2

Rekall can run in either MDI or SDI mode, although are some limitations with both,
mainly relating to window placement. Rekall can be started in MDI mode with the
–useMDI argument, or –useSDI for SDI. Alternatively, it can be switched via the
View/Options menu.

The Rekall Server Dialog
Normally, running Rekall and opening a database will display the server dialog. This
lists the server databases which the Rekall database accesses, and allows you to set
the information need to access them, such as location, usernames and passwords.
Depending on the actual server database the exact interpretation of the values may
vary a bit.

In MDI mode, the dialog window appears within the main MDI window; in SDI
mode the top-level window is filled by the same dialog. In this manual, all the screen-
shots are takes from Rekall running in SDI mode (simply because it is slightly easier
to generate them in this way).

The screenshow shows this dialog for the Orders database. The list on the left has
entries for MySQL, PostgreSQL and XBase databases (called Orders, OrdersPgSQL and
OrdersXBSQL respectively); plus an additional entry !Files which is used when forms
and reports are stored in files rather than in a server database (and which is always
present). The user has just selected the Orders entry and clicked the Edit button, to
make changes to that entry.

12

Chapter 2. Overview and Tour

As well as the actual server database settings, there are two additional options. If
Disabled is set, then Rekall will not access that entry; this can be useful, for instance, if
a remote database is currently not available. The AutoStart option can be selected in
order that a form (called MainForm) will automatically be opened when Rekall opens
this database.

Finally, the tabs on the left-hand side provides access server database tables, forms,
reports and so forth. The first, Servers shows this, the server dialog; the second shows
tables in the server databases.

Viewing Tables
Selecting the Tables tab presents a view the tables in each server database. The view
shows one entry for each server database, and possibly one for the !Files entry; ex-
panding the tree for a server database shows all the tables in that database.

The first time you expand the tree for a particular server database (assuming that
Rekall has not accessed the server database before), you will be prompted to create
an objects table and a design dictionary. The first is used to store forms, reports, and
suchlike, in the database, rather than in the file system. The second is used to store
additional table information (for instance, default field values). You do not need to
create these for Rekall to function, but if you do not then forms, etc., will have will
not be available. This overview assumes that both are available.

Expanding the table itself shows a summary of the columns in a table. This cannot be
used to modify the table structure, but can be useful if you need to remind yourself
of the details of a table; the column names ans sizes, plus some basic properties,
are shown. The next screenshot shows this; the branch for the Orders MySQL server
database has been expanded, and within that the Client table. One thing to note is the
Primary Key type; Rekall has an idea of a preferred column type to use for a primary
key, and if a column fits its idea, then it is shown as such. Of course, this may not be
your preferred type, and you can create primary key columns as you see fit.

13

Chapter 2. Overview and Tour

Double-clicking on a table will show the table in data view, that is, it will show all
the data in the table. You can also get to data view by right-clicking on the table and
selecting the appropriate entry. The screenshow below shows table data view for the
Orders table.

This should mostly be fairly obvious. Table data is shown in a grid, where columns
correspond to columns in the table (and are labelled with the column name), and
rows to rows of data from the table. The toolbar has buttons for record naviga-
tion (first record, previous record, ...), insertion and deletion, and searching. You can
change column widths, and alter the order (this is the display order, and does not
change the table itself).

Values can be changed as you’d expect by editing the fields (or changing the selec-
tion in a combobox). Navigation between fields within a row can be done from the
keyboard using the Enter and Tab keys (and Shift-Tab to move backwards); navi-
gation between rows can similarly be accomplished with the Up and Down Cursor
keys (and Ctrl-Up and Ctrl-Down move to the first or last record). Changes are saved
whenever you change rows (or by using Ctrl-Enter).

A few things are worth pointing out here. All values are shown as simple text fields,
but you can specify (via the design dictionary) that a column logically links to some
other table, and that some value from the other table should be displayed in that col-
umn. In the Orders table, the ClientID and ProductID columns are linked to the Client
and Product tables respectively, and show the client name or product description. If
you click in such a column then the text field is replaced by a combobox which shows
the possible values.

By default, text is displayed as it is returned from the server database, but specific
formats can be given. Here, the date fields are formated as dd-mmm-yy. 3

The left-most column shows row numbers, and will also display a markers for the
current row. If you click in the left-column then the entire row is selected; you can
also use the standard ctrl-click and shift-click methods to select multiple rows, which
can then all be deleted at once.

And if you have a table with lots of columns, you can show the columns in lexical or-
der by selecting Order Columns from the View menu (and switch back to table column
order by repeating).

Forms
Although data can be entered, viewed and updated directly using table data view, it
is much easier for users to do this using a suitably designed form.

14

Chapter 2. Overview and Tour

Forms are listed under the Forms tab. Here you will see an entry for each server
database plus one more labeled !Files. If you expand the server database branches
for each server database you will see the forms that are stored in that database (in
the Rekall objects table); if you expand the files branch, you will see the forms that
are stored in the file system. As mentioned earlier, forms are defined in XML, so it is
quite easy look at a form definition store in the file system with your favourite editor.
You can also look at those that are stored in a database, but you will need to export
the definition to a file (right-click on the form and select Save to File).

One thing to remember about forms (and reports, etc.) is to be consistent. Rekall has
the ability to open one form from another (typically when a button is clicked), but
currently the form which is to be opened must be in the same place as the form from
which it is opened (ie., both must be in the same directory in the file system, or in the
same server database.)

The next screenshot shows the form MainForm from the Orders database. This is an
example of a form that does not actually show any data from a server database. In-
stead, it just contains buttons that open other forms or reports, or do similar things.
The form shows some of the visual effects that can be achieved - coloured text in
different fonts and font sizes, and highlighted regions. The range of such effects that
are available in Rekall is currently fairly limited, but you should be able to produce
sufficiently attractive and usable forms.

Clicking on the Orders button on this form brings up the Orders form, which is shown
in the next screehshot. This form displays orders, grouped up by client. It is an exam-
ple of a form-subform structure, where the outer form shows some client information,
and the inner form shows orders for that client.

15

Chapter 2. Overview and Tour

This form shows some other features that are available in forms, such as scroll bars
for rapid location of records and buttons that perform functions such as record navi-
gation. Note that the buttons are in no way special, they simply invoke some python
code that performs the required operations. Also, although you cannot see it from the
screenshot, the client fields in the outer form are read-only, and cannot be updated
by the user; the form has been designed to show the text in these fields in blue, so
give some indication to the user.

The toolbar contains much the same controls as the table data view. In fact, the table
data view display is actually just a form, abliet one that Rekall constructs on the fly to
display exactly the data in the table.

Rekall Queries
In the context of Rekall, the term query is ambiguous; there are at least tho ways it can
be used. The most general used is as in an SQL query, ie., something like select a, b from
A, B where A.i = B.a. Rekall constructs these internally whenever it needs to retrieve
data from a table, or to update data in a table. It is also possible to enter free-text SQL
queries to retrieve data.

The second use is Rekall specific, and is the subject of this section. In this usage, a
query is an object that contains information about how data it to be retrieved from the
server database. Generally, query will be used in this sense, and SQL query otherwise.

Rekall provides a GUI query designer, which allows you to select tables, to specify
relationships between the tables, and to specify columns (or, more generally, expres-
sions) which are to be retrieved from the tables. From this information, Rekall con-
structs an SQL query which is used to actually retrieve data. We will pass over the
details of the designed here, and return to it in a later chaper.

A query can be displayed in data view, in which case the SQL query is executed and
the data displayed, much as for a table. The screenshot below shows the results of
running the OrdersSummary query in the Orders database. Columns which involved
in explicit relationships between the tables are shown in grey, and cannot be changed;
this is so that the user cannot make a change which would alter the combinations of
rows returned. Apart from this, values can be updated in the usual way.

16

Chapter 2. Overview and Tour

In this version of Rekall there are also restrictions on querys in relation to inserting
and deleting rows. These are described in the chapter on queries.

Reports
Reports in Rekall are basically just the same as reports in any other database front end,
and provide a way to display information from the database, possibly summarized
in some way, and typically in a format that is suitable for printing.

The screenshot below shows a simple report, which is actually derived from the
query shown in the previous section. This report in analagous to the orders form de-
scribed earlier, in that it groups up orders by client, with information for each client
output on a separate page. The report shows a few features of Rekall reports, such
display of the date when the report was generated and the report page number, and
summary values (in this case column totals).

17

Chapter 2. Overview and Tour

Bear in mind that you will be able to generate output values using python scripts, so
it is possible to produce a wide range of outputs. In this report, the date and the page
number are actually produced by snippets of such code.

Notes
1. If you need to, you can rename the main information file and any form or report

files, to consistently change the extension.

2. Actually, as well as the MDI-versus-SDI religious debate, there is a fair degree of
disagreement over what does or does not constitute MDI or SDI. The usage here
is not intended to be authoratative in any way.

3. Rekall can display dates and times in any format supported by the C library strf-
time routine, and can also decode dates and times in most formats.

18

Chapter 3. Connecting to Database Servers

Rekall does not itelf incorporate a database, as, for example does Microsoft Access
with the Jet database engine. Although Rekall comes with an XBase library (which
comprises the actual XBase library and a wrapper library which provides an SQL
interface), this is not part of Rekall, and more that a MySQL or PostgreSQL server
is. Hence, Rekall must be told how to connect to a server database before it can do
anything useful.

From Rekall’s point of view, everything starts at a single file which by has the ex-
tension .rlk 1. This file is a simple text file, which, as of Rekall 1.0.5 is in XML format
(prior versions uses a bar-delimited file, but this is automatically converted). The file
only contains information about connections to server databases; in this respect it is
nothing like the .mdb files created bu Access. You can copy the file or examine it with
a text editor; you can even edit it by hand.

Rekall takes the view that this file is what the end-user thinks of as the database. Just
as a user can open a word processing document in a word processor, or a spead-
sheet document in a spreadsheet program, this file can be thought of as a database
document that is opened by a database program. Of course, the real server database
may be being accessed from lots of places (over a network, through a web server,
whatever). Actually, the Rekall database file could be opened by several instances of
Rekall (for instance, if it is stored on a file server), but all issues relating to multiple
concurrent access to data is handled by the server database.

The database file contains information about one or more server databases. Usually,
it will contain information about a single server database, but there is no limit. In fact,
if you have more than one server database, it is even possible to design forms that
access data from more than one server database (but more of this later).

The Server Dialog
The first time you run Rekall you will get an empty window. Click the New Database
tool (or select File/New Database from the menu), then select a directory and a file
name, just as you would do for a new work processing or spreadsheet document;
this gives the location and name of the database file. The one difference is that you
should probably create a new directory and locate the database file there - why you
will want to do this is explained a bit further on.

If you create a database file called Orders, then a dialog will appear in the window, as
illustrated in the screenshot below. The tabs down the left-hand side correspond to
the various components of Rekall; tables, forms, etc. The first tab, Servers displays the
information about server databases, which is what is in the database file.

19

Chapter 3. Connecting to Database Servers

The !Files Entry
As was mentioned earlier, Rekall can store forms and reports and so forth either in a
server database, or in the file system (or both). If they are stored in the file system then
each form, report, etc., will be stored in a separate file, and these files will be located
in the same directory as the database file (this is why you will probably want to place
the database file in a new directory). The dialog will always show an entry called
!Files, which corresponds to forms, etc., that are stored in the file system. However,
we need to specify at least one server database, otherwise there will not be any tables
that Rekall can access!

At this point you have two choices. If you decide to store forms, etc., in the file system,
then you can add a server database to the !Files entry. To do this, highlight the !Files
entry and click Edit (or double-click the entry); this enables the fields on the right
hand side. First, select the required type of database server, and then enter the details
for your server database. The exact details depend on the actual database server, but
generally they are as follows:

• Host is the machine where the server database is running. If this is the same ma-
chine as you are running Rekall on, then this entry can probably be left empty or
set to localhost, otherwise it needs to be the name or IP address of the server.

• Database is the database name within the server database. Servers like MySQL and
PostgreSQL support multiple logical databases, so you need to name the one you
want.

• User and Password need to be set if you have to give a these to access the database.

• Port, Socket and Flags are dependant on the server database. The first is typi-
cally used for TCP/IP connections when the server database is listening on a non-

20

Chapter 3. Connecting to Database Servers

standard port; the second is similarly used for local connections. Usually, you
won’t need to set any of these.

The Disabled checkbox can be set if you need to temporarly prevent Rekall from trying
to access the server database. This may be useful if the database file specifies more
than one server database and one of them is unavailable. Note that Rekall will set
this automatically if it cannot connect to the server. The AutoStart option is used to
arrange that a form is automatically opened when Rekall started up, and is explained
in the chapter on forms.

A special case is the XBase server database, which does not have a separate server
process, and has no notion of users or passwords. In this case, Database is the name of
the directory in which the XBase table files will be stored. As a special case, a period
(.) can be used, meaning the same directory as the database file itself is located in.

One you are happy with the settings, click Save.

The second option is to store the forms, reports, etc., in a server database, in which
case you need to click New. This also enables the right-hand fields, with the difference
that this time the Server name field is also enabled. The server name is any name you
care to use to identify the entry; you might for instance set it to be the same as the
database name, but any value will do, Rekall isn’t fussy. This time, when you save the
settings, a new entry will appear with the server name.

The next screenshot shows the dialog with two entries, one for !Files and a second
named DemoMySQL which accesses a database named RekallDemo with user name
orders and password bigboss on a MySQL server database. The latter is being edited.

The effect of these choices will become more apparent when you move to one of
the other tabs, such as Forms or Reports. Looking ahead slightly, this will show a
tree view (in the manner of a file browser) with two levels; the top level comprises

21

Chapter 3. Connecting to Database Servers

the servers defined here, and the next level shows the object - forms or reports or
whatever - in that server.

There are two points to bear in mind. Firstly, Rekall cannot create databases not users
with MySQL and PostgreSQL database servers, so you will need to do this yourself.
The details of how you do this is outside the scope of this manual. Secondly, for
security reasons, some server databases may not be installed out-of-the-box to accept
all types of connections. For instance, PostgreSQL is generally not installed to accept
TCP/IP connections, so if you want to connect Rekall to a PostgreSQL database on a
remote machine, you may well need to change some settings on that machine (clue:
have a look at the /var/lib/pgsql/data/pg_hba.conf file).

The Rekall Objects and Design Tables
Before going any further, two special tables that Rekall creates and uses should be
mentioned. Rekall will attempt to create these when it access a server database and
finds that they do not exist (subject to checking with you that they should be created).
The first table, __RekallObjects, is used to store objects such as forms and reports when
they are stored in a server database. The second table, __RekallDesign is used to store
additional table-related information, such as validation expressions and Rekall-level
default values 2.

Normally, you should allow Rekall to create these when it asks. One time that you
might not is if you are using Rekall simply to look at (and maybe modify) data that is
stored in an existing tables, and where you will not be creating any forms or suchlike.
In the event that Rekall cannot create the tables (maybe you have read-only access to
the server database), it will warn you but continue 3.

And Now, the Real Thing
And with that, you should be connected to a server database, in which case it is time
to get on to the real stuff, starting with tables.

Notes
1. For historical reasons, the extension .kdb is also available, but preferably should

not be used.

2. Rekall does not create the __RekallObjects table for the !Files entry, since in this case
is does not store objects in the database.

3. There is a minor irritation that Rekall will ask you each time you start. There
should be an option to stop Rekall from bothering at all about these tables.

22

Chapter 4. Accessing Tables with Rekall

This chapter describes how to work with server database tables using Rekall; how to
view and modify the data they contain, and how to create and modify (and delete)
them. To start with, we’ll look at how Rekall interacts with the types of data stored in
server databases.

Data Types in Rekall and Servers
Relational databases (what most people would think of as an SQL database) store
data in tables, where the a table contains columns each of which has a type (such as
integer or varchar). Rekall maps these onto a set of internal types when data is read
from a table, and back again when the data in a a table is updated. The table below is
a list of these types:

Rekall Type Usage

Integer Used for whole numbers, like 42 or 1066. This is represented by the
hardware’s natural integer value, so will almost certainly be a signed
32-bit number, which has a range of around plus-or-minus 2 billion
(2000000000).

Float Used for numbers with decimal points. Again, this is handled using
the hardware’s natural long floating point representation; almost
certainly 64 bits. Note that Rekall does not currently have any specific
internal support for fixed point numbers.

Date This type holds a date, ie., a year, a month and a day. Valid dates start
with the introduction of the Gregorian calendar in England (in 1752),
and far as Rekall is concerned, the universe ends around 8000AD. If
you database ceases to work after this date, you are welcome to notify
us!

Time Contains a time, ie., hours, minutes and seconds.

DateTime Combines date and time.

String This type is used to handle values that are returned from the database
as strings of text characters. Typically these are things that can be
thought of a printable, although there is no specific requirement for
this. Also, strings are not required to be null-terminated (although life
is often easier if they are). There are no length restrictions.

Binary The binary type is rather like the string type, but is used for data
which is typically not thought of as printable, for instance images.
Again, there are no length restrictions (other than the usual things like
availability of memory).

Boolean True or false. This is an explicit truth value, although other types can
interpreted as true or false (for instance non-zero numbers are true,
and strings are converted to numbers).

When Rekall accesses a table in a server database, it identifies the type of each column
retrieved (or, in general, each expression that it retrieves, this being relevant in forms
and reports) and maps the server database type to one of the above internal types.
The exact mapping depends on the particular server database (and the database driver
that interfaces Rekall to the server database), but the table below shows typical map-

23

Chapter 4. Accessing Tables with Rekall

pings for common SQL types (both SQL92/SQL3 types and some server database
specific types):

Rekall Type SQL Types

Integer smallint, int, integer

Float float(p), real, double precision

Date date

Time time

DateTime timestamp

String char(n), varchar(n)

Binary blob

Boolean boolean, logical

In addition, Rekall defines two pseudo-types, Primary Key and Foreign Key. The first is
the type that Rekall thinks is the most appropriate type for a primary key column, for
instance for MySQL this is a (32 bit) integer column which is marked with the MySQL
primary key and auto-increment attributes. The second is similarly for a foreign key,
and is typically a (32 bit) non-null integer. This type is useful if you are not especially
bothered about the type used for primary keys, and are happy to let Rekall make the
decision for you 1

Some server databases other server-specific types. PostgreSQL is a notable example,
having types for such things as geometric objects (points, line segements, and so
forth) and computer networking (such as internet addresses). Rekall will generally
treat these as String values, passing back values retrieved from the server database
exactly as they are returned by the database select query. Similarly, when one of these
values is updated in a table, the text string is passed as part of the update query.

Rekall will do its best to check values internally, for instance if it knows that a column
contains an integer, it will ensure that only digits can be entered. This means that
errors are detected and reported quite early on. However, in the case of any server-
specific types, such checking is not done 2 so errors will only be reported as and when
the server database reports and error when a query is presented to it. For instance,
PostgreSQL will accept a point value in the format (10,20), but Rekall will not prevent
you from entering (10.20), and an error will not be reported until Rekall tries to update
the table. There is a way around this since input fields in forms can have arbitrary
validation expressions associated with them, and you can also associate validation
expressions with table columns (as explained below), but you will have to do this
yourself.

Designing and Altering Tables
Selecting the Tables tab in the mail databsae window presents a view of the tables
in each server database; there should be a top-level entry for each server database
(including one for the !Files entry). When the database contains any tables, these will
be viewable by expanding the tree. However, if you have just created a new database
on the server, the tree will expand to a single item, Create new table. Double click this
to bring up the table designer.

24

Chapter 4. Accessing Tables with Rekall

The upper half of the table designer contains fields into which can be entered the table
column name, the column type, whether it is the primary key column, and a comment.
The lower half contains fields which show information about the column selected
in the upper half. Of these, the length, precision, null OK. indexed and unique fields are
properties of the actual column in the table. The remainder are additional information
which Rekall stores about the column (in the __RekallDesign table).

The standard sort of keystrokes can be used to move around the design form. Up
and Down-Cursor move between rows; Enter, Tab and Shift-Tab move between fields
(and between rows when at the last or first field in a row). The gray coloured bar to
the left of the upper half indicates the status of each row (which in this case corre-
sponds to a table column) as below; you can also right click in the bar to gain access
to insert and delete operations.

Marker Meaning

Current row

Data changed

Row marked for deletion

Row inserted

Current row but focus in another block

The table below shows the three database tables that are used in the Orders database.
Client contains details about each client; Products contains information about each
product; and Orders list clients’ product orders.

Table Name Column Name Type Length Null OK?

Client ClientID Primary Key

Company VarChar 64 No

Salutation VarChar 8 Yes

Contact VarChar 64 No

Department VarChar 64 Yes

Address1 VarChar 64 No

Address2 VarChar 64 Yes

Address3 VarChar 64 Yes

TownOrCity VarChar 64 No

PostCode VarChar 12 No

Telephone VarChar 20 No

DateRegistered Date No

Products ProductID Primary Key

Description VarChar 80 No

UnitCost Double No

Stock Integer No

25

Chapter 4. Accessing Tables with Rekall

Table Name Column Name Type Length Null OK?

DeliveryDate Date Yes

Image Blob Yes

Notes Blob Yes

Orders OrderID Primary Key

ClientID Foreign Key No

ProductID Foreign Key No

Quantity SmallInt No

DatePlaced Date No

DateDispatched Date Yes

The image below shows the table design screen for the Orders table, just before the
table design is saved (by clicking the floppy-disk tool). You can see the use of the
Primary Key and Foreign Key pseudo-types. Once the table design has been saved, the
table will appear under the Tables tab; expanding the table there shows a summary of
the table columns.

If you open an existing table in design view (or if you have just saved a table design)
then Rekall examines the columns to see if any match with its notion of a primary
key, and if so shows the type as Primary Key. However, this is not true of Foreign
Key, so if you create a column with this pseudo-type, it will typically reappear as
an integer. Note that, at present, Foreign Key is purely a design convenience, and
no foreign key information is actually passed to the server database even if it does
support this notion.

26

Chapter 4. Accessing Tables with Rekall

You can make changes to the table design and save them. Rekall will attempt to pre-
serve table contents. Clearly, any data stored in a column that is dropped will be lost,
otherwise values are converted (if possible) if the column type is changed 3 .

You may also have noticed some text in the field labelled Link at the bottom of the
previous image. We will return to this later. Meanwhile, the left-hand most tool on
the tool-bar is used to switch from table design view to table data view; when in data
view, this is replaced by a small set-square tool, which switches back to design view.

Viewing and Updating Data in Tables
For table design view, clicking the table data view tool switches to data view (or go
via the View menu). If you are not in design view, you can go straight to data view
by double-clicking on the the table under the Tables tab, or by right-clicking on the
table and selecting Data View. In data view you can view data, and usually update
and insert (see the first appendix for a discussion of the issues involved); suffice to
say here that if you created one of the column with the pseudo-type Primary Key then
update and insert will be possible.

Data can be entered in the usual sort of way. Table data view is set up so that when-
ever you move between rows, any changes you have made to the row you are leav-
ing are saved to the database. The contents of a field is checked for validity when you
leave the field (but remember the comments about server-specific types make above);
the contents of all the fields in a row are checked when you leave the row. There are
tools on the tool-bar for the various record navigation operations; first, previous, left,
last and so forth.

Tool Icon Function

Go to first record

Go to previous record

Go to next record

Go to last record

Insert new record

Delete record

Save current record

Start search

Execute search

Cancel search

Reload table

27

Chapter 4. Accessing Tables with Rekall

Clicking the Start search button will clear the current row. You can then enter search
criteria, and click the Execute search button, whence Rekall will find and display those
rows which match the criteria. As well as exact values (like 42 or Fred) you can enter
expressions like >12 into numeric columns and F% into text columns 4

The table below shows the three database tables that are used in the Orders database.
Client contains details about each client; Products contains information about each
product; and Orders list clients’ product orders.

The illustration below shows the Clienttable after a few rows of data have been added.
As on the table design form, there is a scroll-bar which marks the current row and so
forth.

Note that since the first column was specified as Primary Key, you do not need to
enter a value; when the record is inserted, a value will be generated (in this example
by MySQL via the auto-increment column type.

A row can be deleted by right-clicking in the left-hand most column and selecting
delete, or by clicking in any field in the row and then clicking the delete tool in the
toolbar. You can also select multiple rows for deletion using the normal Ctrl-Click
and Shift-Click methods.

Other Table Design Settings
As well as the actual table as stored in the server database, Rekall can also store ta-
ble design information such as default values and validation expressions. These are
stored in a table in the server database called __RekallDesign. Note that these apply to
data display and entry in table view; they are not passed to the server database and
are not used when a form is created which accesses the table. The table below lists
these:

Legend

28

Chapter 4. Accessing Tables with Rekall

Legend

Validator Validation expression used when entering data. This is a unanchored
regular expression.

Ignore case Case insensitive input validation

Default
value

Value to be used if none given

Format Data formatting for display. See below.

Link Display data from a linked table. See below.

If you click in the Format or Link fields, then a small button will appear; clicking this
will show a helper dialog which assists in setting an approproate value. Format set-
ting is fairly straightforward, with the dialog showing appropriate types and sample
formats. Numbers are formatted using C fprintf style format strings, while dates and
times are formatted using strftime format strings. Please refer to an appropriate man-
ual for further details.

The link setting needs more explanation. Suppose you have a column, say ClientID,
which contains (foreign) key values which refer to clients stored in a table Clients,
and you would like to display the client name rather than the key value.

To do this, the link setting would be something like Client:ClientID:Name, meaning
to display the Name column from the Client table, where the ClientID value in that
table is the same as the column value in this table. To make this easier, the helper
dialog allows you to select the table to which to link, the column in that table which
is matched to the (foreign) key column, and an expression to display. The screenshot
below shows the Orders table; the ClientID and ProductID columns have been linked
to the Client and Product tables, and the date columns have been formatted as dd-
mmm-yy. Focus is in the ClientID column, so one row is showing a combobox.

One thing to note about linked table fields is that they appear as combo boxes when
focus is in the field, but as plain text otherwise. This is an example of a morphed con-
trol. In fact, all controls in the table data view are morphed, although the difference
is much less apparent for simple text fields. This is primarily done in order to make
screen update sufficiently quick when there are a large number of columns in a table,
or a large number of rows on display, however, the switch to and from a combobox
can usefuly save space on the display. Looking ahead once again, you can also morph
some types of control in any forms which you design; in fact, table data view is ac-

29

Chapter 4. Accessing Tables with Rekall

tually a perfectly standard Rekall form, although it is constructed on the fly to match
the table.

Some Miscellanea
This chapter finishes with some miscellaneous functions that are available in table
data view.

The rows can be ordered by the values in a column by clicking in the header; re-
peated clicking switches between ascending and descending ordering. Note that this
ordering is done within Rekall itself and not by issueing a new query to the server
database; this has the advantage of speed but may result in a different ordering (due,
perhaps, to a difference between alphabetic and lexical ordering).

Column widths can be changed by dragging on the boundaries between column
headers, and column order by dragging entire headers to the left and right. These
changes are preserved the next time you open the table in data view provided that
the __RekallDesign table exists. In addition, the View menu has a Order Columns item,
which can be used to switch the column order between the order present in the table
and ordered lexically on the column names. This is useful if you have a table with a
large number of columns, are are having difficulty locating a particular column!

Notes
1. These types are particularly useful with XBase, which has no notion of primary

keys. The Rekall XBase driver handles primary keys by creating a 22 character
column, and generates values that are almost certain to be unique. A foreign key
also becomes a 22 character column. Note that for this to work, the primary key
column must be the first column in the table.

2. In fact, such checking could be done, since Rekall contains mechanisms to pass
driver-specific type information around with data values. However, this is not
currently used for type checking.

3. Currently, Rekall has no knowledge of the server database’s abilities to directly
change a table using the SQL ALTER command. Data is therefore preserved by
copying, so be aware that changing the design of a table which contains a large
number of rows of data may not be a good idea.

4. This is the underlying standard SQL notation for a partial string match. An option
to use the Unix-like * wildcard will be added at a later date.

30

Chapter 5. Designing and Using Forms

Although data can be entered, viewed and updated directly using table data view, it
is much easier for users to do this using a suitably designed form. In addition, there
are lots of additional things that you can do with forms, such as view data from more
than one table in the same form, or add functionality using python scripts.

This chapter describes the machanics of constructing a form, how you can structure
them and what sorts of data controls are available for use in them. It does not explicit-
ley cover python scripting, although it does describe some things, such as navigation
buttons, which do make use of Rekall’s scripting capabilities. Scripting is returned to
in detail in a later chapter.

Creating a Form

Forms are listed under the Forms tab. Here you will see a subtree for each server
database plus, as usual, the !Files entry. As noted earlier, Rekall allows you to store
forms either in a server database (inside the __RekallObjects table), or in the file sys-
tem. Entries for each for appear in the appropriate subtree. The subtree also has a
Create new form entry which can be double-clicked to create a new form.

One thing to remember is to be consistent. Rekall has the ability to open one form from
another (typically when a button is clicked), and also to execute reports and copiers
from a form, but currently the object which is to be opened must be in the same place
as the form from which it is opened (ie., both must be in the same directory in the file
system, or in the same server database.)

This section describes the creation of the Clients from from the Orders demonstration
database. Bear in mind that, currently, Rekall lacks anything like the form creation
wizards that are available in, for example, MicroSoft Access. They are planned, but
are not here yet.

Creating a New Form: The Form Dialog
Double-clicking the appropriate Create new form item will bring up a form proper-
ties dialog. This dialog is typical of the properties dialogs for all form (and report)
controls. To edit a particular property, double click the property name (the left-hand
column); this will replace the right-hand column with a dialog area appropriate to
the property being edited. You can accept changes to a property with the Accept but-
ton, or ignore them with Ignore; however, until you click OK, no changes are make to
the form (so Cancel cancels any individual property changes 1 . The small list box at
the top can be used to limit the display to subsets of the properties; this is useful for
things that have large numbers of properties.

Depending on which property is being editied, the Clear or Verify buttons may be
enabled. The former is used to clear the property to its default state (that is, the state
it would be in when the object was first created). The latter is used when appropriate
to check that a property is valid, for instance to check that some python script com-
piles correctly, or that a validation expression is itself a valid regular expression. In
addition, Rekall will make what checks it can to make sure that properties are only set
to sensible values. Lastly, when running KDE versions of Rekall the Help button may
be enabled; when it is, clicking it will bring up a context help popup (note that this
popup is not a modal dialog, so you do not need to close it to return to the properties
dialog).

The screenshot below shows the property dialog part way through setting various
properties; the table which follows lists the properties, their significance and their

31

Chapter 5. Designing and Using Forms

values. This dialog essentially asks about properties of the form itself. For brevity,
properties which are not relevant here and are left blank are not listed.

Property Significance Setting

Scripting
language

Scripting language used in the form. This
should always be py for python.

py

Caption Caption for form title bar. Clients

Top-level block
type

Forms are constructed of nested blocks; this is
the type of the top-level block. This is
explained in more detail later.

table

The property dialogs for all objects will show a Notes setting. This is ignored by Rekall
but can be used for arbitrary notes, for instance for documentation.

Creating a New Form: The Query Dialog
On clicking OK, a second similar dialog appears. This requests information about
where the form should fetch its data from, in this case which table.

32

Chapter 5. Designing and Using Forms

Property Significance Setting

Server name Name of the server database which contains
the table.

Self (see below)

Table name Name of the table in the server database. ClientID

Unique key Name of a table column which provides a
unique key. This is preferrably the primary
key column. later.

ClientID

Row order SQL expression giving the order in which the
generated query will return rows. later.

Company,
Contact

Where condition Expression which is valid as the where part of
an SQL select query. See below.

${Filter}

Setting the Server Name field to Self is interpreted to mean that the server database to
be used is the same server database as the form is stored in (if the form is stored in
the file system then for this to work the !Files entry in the server dialog must iden-
tify a server database. This setting is useful, since it means that you can copy the
form to another server database, and provided that the second server database has
compatible tables, etc., the form will work unchanged.

The value of the Where condition which has been set to ${Filter} is clearly not valid as
part of an SQL select query! This is shown here since it as an example of a parameter-
ized property, such as are used in several places the demonstration Orders database.
Briefly, when a form (or report) is executed, any properties what contain text of the
form ${name} have that text replaced with the value of the paramater name, if it is
defined. In this example, it gives a way of executinf the form with a filter to select
only clients that match some criteria. The whole area of paramaters will be returned
to later in the manual.

Creating a New Form: The Block Dialog
The third and final dialog requests information about the the way data is displayed
and handled; this is the block dialog. Briefy, forms are constructed of nested blocks,
where eack block displays data which has been retrieved from somewhere in the
server database. For instance, the classic form/subform arrangement is represented
as an outer and an inner block. The form itself is a block, the block dialog appears.

33

Chapter 5. Designing and Using Forms

Property Significance Setting

Width Form (block) width in pixels 500

Height Form (block) height in pixels 400

Row count The number of rows of data to be displayed;
zero will show multiple rows depending in
the block size.

1

X-delta X-offset between data controls when more
than one row is displayed. Not relevant if only
one row is displayed.

0

Y-delta Y-offset between data controls when more
than one row is displayed. Not relevant if only
one row is displayed.

20

Y-delta Y-offset between data controls when more
than one row is displayed. Not relevant if only
one row is displayed.

20

Control name Name of the block, used for scripting. Not
relevant here.

UnnamedForm

Show Scroll Bar Setting this to Yes will display a scrollbar
which can be used for record navigation.

Yes

Automatic
update

If set to Yes (the default) then changes are
automatically saved when moving to a new
row.

Yes

Up to this stage, clicking the Cancel button in a properties dialog will abort the form
creation. Clicking OK for the third time will move you on to the point of a blank form
appearing.

Adding Controls to the Form
At this stage, a blank design form appears, onto which controls can be placed. Rekall
does not use a tool box; all controls are added by sweeping out an area with the
mouse (ie., point to one corner, press and hold the left button, move to the opposite
corner, and release) and then using the popup menu which appears, when the right
button is clicked. Lets start by adding controls for each of the table columns other
than the primary key (which the user does not need to see).

Later in the manual there is a complete list of the available controls and the properties
that each has, but the table below is a basic list.

Control Description

Button Clickable button. Can be used to trigger python scripts to
perform actions.

Label Fixed text label (but can be changed from a script).

Field Simple text display and entry.

Choice Pick one value from a list, displays as a combobox.

Link Pick on value from a list, is linked to values in another table.

34

Chapter 5. Designing and Using Forms

Control Description

Check On/off selection, displays as a checkbox.

Pixmap Used to display images. Displays common formats like .bmp, .jpg
and .png.

Row Mark Used to display row number and current row markers, as in
table data view.

Memo Multi-line text edit control.

Rich Text Displays text in QT rich text format (a very-much stripped down
HTML).

Tab Control Provides a way of constructing a tabbed control, as in a tabbed
dialog.

If the grid tool towards the right of the tool-bar is turned on then controls will snap
to the grid, which generally helps to make layout easier. You should also note that by
default forms use fixed layouts. However, Rekall supports a limited resizing facility
(which you may have noticed in the table design and display screen 2) which is
described later.

When the popup-menu appears, you can select the desired type of control. The actual
contents of the menu will vary depending on exactly what sorts of controls can be
added (there are some restrictions). The menu will also have a New Block submenu,
which can be ignored for this form.

Here we will add Fields (which are simple line-edits controls) for each column other
than Salutation which will be a Choice (a combobox). In addition, there are labels to
go with the fields. The two tables below show the settings for the first Field control
and the Choice control.

Property Significance Setting

X-position X coordinate of the field 140

Y-position Y coordinate of the field 20

Width Field width in pixels 280

Height Field height in pixels 20

Control name A name which identifies the control in the
enclosing block. Can be used it scripts.

Company

Display
expression

This is the expression that is used in the SQL
query which retrieves data for this field.

Company

Tab order Tab order value when tabbing round fields. 1

Text alignment Text alignment in the field. left

Property Significance Setting

X-position X coordinate of the field 140

Y-position Y coordinate of the field 50

Width Choice control width in pixels 100

35

Chapter 5. Designing and Using Forms

Property Significance Setting

Height Choice control height in pixels 20

Control name A name which identifies the control in the
enclosing block. Can be used it scripts.

Salutation

Field name The name of the column in the table whose
contents are displayed.

Salutation

Tab order Tab order value when tabbing round fields. 2

Values The set of values that are offered. Mr|Mrs|Miss
|Dr|Sir|Lord

The following screenshot shows the form after all these controls have been added.
The blobs at the corners of each control can be used to move or resize the control (or
groups of controls, as explained a little further on). The scrollbars to thr right and
bottom of the window can be used to pan the window, in case you want to design
a form which is actually larger than the window. The vertical scrollbar in the design
area appears because of setting the Show Scroll Bar property, and will be usable in
data view (ie., when the form is actually running) to navigate through records. The
rectangle to the bottom-left of the design area also appears on account of this setting,
and will show a record number, line Record 42 of 126.

Double clicking a control brings up the properties dialog for the control 3. Right-
clicking in control (or in the block background) brings up a popup menu appropriate

36

Chapter 5. Designing and Using Forms

to the control or whatever, including options to Cut, Copy or Delete the control; the
properties dialog can also be accessed from this menu. In the case of the background,
this also includes options to insert new controls.

Positioning Controls
There are a couple of shortcuts that can be used to speed up the addition of con-
trols. After adding a control, its blobs will be in red (active). If you right-click in the
background and select a new control type while holding down the shift key, then the
new control will be the same size and a little below the active control (without shift
it would be to the right). The newly added control will then become active and the
previous control will be marked in green (a follower). Now if you right-click and se-
lect a control without bothering with the shift key, it will be positioned with an offset
which is the same as that between the two previous controls. This allows you to work
down a column (or across a row) quite quickly.

Controls can be aligned and sized either by using the mouse to move or resize them,
or by opening their property dialogs, and explictely editing the position and size
properties. Also available on the toolbar are a pair of controls which assist position-
ing. The first Enable Snap to Grid if an on/off toggle; if on then controls will be au-
tomatically aligned and sizeed to the grid immediately after creation or after you
manually move them. The second, Snap Controls to Grid will align and size all se-
lected controls (ie., controls marked with the red active or green follower corner blobs)
to the the grid. This is useful if automatic snapping is off, but you’d like to align some
subset of the controls.

Enable/disable automatic snapping.

Snap selected controls to grid.

However, Rekall also allows you to align control to one-another, and to make two or
more controls the same size. If two or more controls are selected, then the alignment
and same-size controls on the toolbar become active. In each case, the active control
(the one with the red blobs) determins the alignment or size. The tools are show
below:

Align controls to top

Align control to bottom

Align controls to left

Align controls to right

Make controls have the same width

Make the controls have the same height

37

Chapter 5. Designing and Using Forms

Make the controls have the same size

Saving and Showing the Form
You can save the form by clicking on the Save tool or using the File/Save menu item.
The first time you save you will be prompted for a name under which to save the
form. If you are creating the form in the file system it will be stored as name.rkl.frm ; if
created in the server database it will be stored in the objects table. By the way, forms
(and reports) are stored in XML format, so if you are inquisitive and save the form to
the file system, then you can have a look at it with an editor (and evey modify it; got
the caption wrong? well, just fix it while you are there!)

Once saved, you can switch to data view (either via the View menu or using the left-
hand most tool), in which case you should see any data that you entered into the
table earlier. The various tools for record navigation appear on the tool bar.

Adding Navigation Buttons
To finish the form, we’ll add some buttons to allow record navigation without having
to use the tool bar. Buttons are a bit like labels, in that they don’t need to refer to a
column in (or expression from) the table about the same, but the settings are a little
more important. The table below shows the settings for a Next button.

Property Significance Setting

X-position X coordinate of the field 200

Y-position Y coordinate of the field 350

Width Choice control width in pixels 50

Height Choice control height in pixels 40

Control name A name which identifies the control in the
enclosing block. Can be used it scripts.

Next

Field name The name of the column in the table whose
contents are displayed.

>

On Click The action to perform when the user clicks the
button.

#Click

The two important settings are On Click and Control name. Without going into details,
the On Click setting invokes a standard Rekall python function. The function gets the
Control name setting and uses that to decide what to do, as listed in the next table.
By the way, this mechanism is provided as a quick and convenient shortcut to add
navigation buttons without having to write any python scripts (and there are some
other similar shortcuts described a bit further on). The sections of this manual on
python scripting describe how you could do the same thing without using the short-
cuts, which then opens the way to providing much more complicated, application
specific functionality.

38

Chapter 5. Designing and Using Forms

Control
name

Action

First Go to first record

Previous Go to previous record

Next Go to next record

Last Go to last record

Add Add (insert) a new record

Save Save changes to current record

Delete Delete current record

Query Start a query (ie., search)

Execute Execute a query

Cancel Cancel a query

Below is an image of the finished form, with everything there, as it is in the demon-
stration Orders database. There is actually one extra control there (the combobox be-
low the main fields and aboce the buttons), but that one is not explained until later.

Some Magic: Enabling and Disabling Navigation Buttons
One last bit of magic. Switch to design view, right-click in the background, select
Block properties and then set the On Current property to #Current. OK the properties,
save the form and go back to data view. You should find that the buttons now enable
and disable appropriately. If you really want to see how this works look at

39

Chapter 5. Designing and Using Forms

$PREFIX/share/apps/rekall/script/py/RekallMain.py .

This is not dissimilar to the navigation buttons, and causes a python script to be run
each time you move from one record to another (ie., whenever a record becomes
current). Essentially, the code checks which record is not current (the first, the last,
or so on) and enables or disables any appropriately named buttons. Again, this is all
returned to in detail in the section on python scripting.

Creating a Form with a SubForm
In the demonstration Orders database, the form used to display products is be created
in just the same way. The only extra features are the PixMap control, which can be
used to display the Image column from the Products table, and the multiline Memo
control.

The next form is the orders form. This is a little more complicated, since it contains
a subform within the main form. The main form shows a client; the sub-form shows
all orders placed by the client (analagously, there could be a form whose mainforn
shows products, and whose sub-form shows all orders for that product).

The image below shows this form (which accesses the Client table), called Orders, just
after the fields for the Client table have been added. For a bit of variety, the fields are
all marked as read-only and have the text colour set to blue (so give the user some
indication that they are read-only, of course you can use whatever colour you like, or
maybe change the font).

The subform can now be added. Rekall uses the general term block to refer to things
like subforms (and similar objects in reports). In fact, the entire form is itself a block.
Sweep out a suitably large area and select New Block/Table Block. This brings up a
dialog for the table which is to supply the information, in this case the Orders table.

40

Chapter 5. Designing and Using Forms

It is followed by a dialog for the block properties; the position and size will be set
according to the area that you swept out; the other settings are shown below:

Property Significance Setting

Row count The number of rows of data to be displayed;
zero will show multiple rows depending in
the block size. later.

0

X-delta X-offset between data controls when more
than one row is displayed. Not relevant if only
one row is displayed.

0

Y-delta Y-offset between data controls when more
than one row is displayed. Not relevant if only
one row is displayed.

20

Parent field This is the name of an item of data retrieved
in the query for the outer block, which is used
to link data displayed in the inner block.

ClientID

Child field Similarly, a column in the query used for the
inner block, which links to the outer block.

ClientID

The next image shows the form after controls have been added to the inner block.
The left-hand most control is a Row Mark, as seen in the table design form; the right-
hand three controls and simple Fields. The second control is a Link, which displays a
value from some other table according to a value in the form. When creating a link,
two property dialogs will appear; their settings are shown below the image.

41

Chapter 5. Designing and Using Forms

The tables below show the important properties for the inner block and its associated
querty.

Property Significance Setting

Server name server database name Orders

Table name Name of the table from which a value will be
displayed.

Products

Unique key A unique key column in the table. ProductID

Row order Ordering express for the SQL query used to
retrieve displayed in the inner block.

Description

Property Significance Setting

Control name Name used when accessing the control from a
script

Product

Parent Field Name of the column in the block which
identifies a row in the Link control’s table

ProductID

Child field Name of the column in the Link controls table
used to link to the block

ProductID

Display
expression

SQL expression displayed in the Link control. Description

42

Chapter 5. Designing and Using Forms

Containers and Stretchable Forms
Rekall contains some basic support for automatically resizing and repositioning of
controls when the size of a form is changed by the user. Although this is not as
sophisticated as (say) that provided by the QT toolkit in which Rekall is built, is is
hopefully sufficient to provide a useful level of functionality.

Firstly, all form controls are embedded in a container, and containers may be nested
inside one another. The form itself is a container, and so it a sub-form (and sub-sub-
form ...). The position and size of a control depends on the properties of that control,
and possibly on the position and size of the container in which it is embedded; that
same applies to nested containers. Secondly, forms have a Stretchable, which can be set
to Yes to enable resizing (if this property is not set then the form window can still be
resized, but the controls remain fixed within it, and scroll bars appear as neccessary
which can be used to pan the window).

Associated with each control and each container (except for the outermost form-level
container), are a pair of properties, X mode and Y mode. These determin the behaviour
of the control (or container) as its parent container is resized (in the X and Y directions
respectively). The default value is Fixed, in which case resizing a container has no
effect on embedded controls and containers.

However, these properties can also be set to either Float or Stretch. If the X mode of
a control is set to Stretch and the container in which it is embedded changes width,
then the width of the control changes to match; if it is set to Float then the control
stays the same width, but the whole control moves right or left with the right-hand
edge of the form. Y mode similarly controls the behaviour as the height of the form
changes. The table below gives the exact meanings and behaviour for X mode (Y mode
is analagous).

Setting Property Value Behaviour

Fixed X Distance of left edge of
control from left edge of
container

Position stays fixed

W Width of control Width stays fixed

Float X Distance of left edge of
control from right edge of
container

Control position tracks right
edge of container

W Width of control Width stays fixed

Stretch X Distance of left edge of
control from left left edge of
container

Position stays fixed

W Distance of right edge of
control from right edge of
container.

Width position tracks right
edge of container

In the demonstration database, the subform is set to stretch in both directions, while
the buttons are set to float in the Y direction. You will also notice that, since the num-
ber of rows displayed in the subform is set to be adjusted automatically according
to the height of the subform (ie., Row Count is set to zero), then the number of rows

43

Chapter 5. Designing and Using Forms

displayed changes as the form height changes.

As noted above, forms themselves are containers, as are nested subforms (blocks).
In addition, there are a few other container objects. The simplest is simply called a
container, which can be added in the same way as a subform - sweep out an area,
and select New Block/Container from the popup menu. In this usage, any control that
is embedded in the container is logically part of the block in which the container is
embedded, so any data that is retrieved for use in data controls (fields, memos, etc.)
comes from the same place as the block retrieves data from (typically the same server
database table).

Supppose that you’d like a form which shows multiple rows from a table, which
adjusts the number of rows according to the size of the form, and which has a row of
navigation buttons across the bottom. Without using a container this is not possible,
since the number of rows will adjust to occupy space down to near the bottom of the
form. However, using a container, this effect can be achieved, and is illustratd in the
screenshot below. The data controls are placed inside a container which has X mode
and Y mode both set to Stretch, while the Y modes of the buttons are all set to Float. For
effect, the container has been given an edge by setting its Frame Style property.

Tab controls are also containers. These comprise the tab control itself, and one or
more tab pages. The geometry of the tab pages is determined by the geometry of the
tab control; they are the same width, and the same height less a bit for the tabs.

Form Navigation
You can move from control to control and record to record in various ways; using the
toolbar, using the keyboard, using any buttons that you have added to the form, and
using the mouse.

Apart from the obvious point-and-click to move to another control, you can also use
the tab key; tab on its own moves to the next control while shift-tab moves to the
previous control 4 . Enter also functions the same as the tab key. The tab order is

44

Chapter 5. Designing and Using Forms

initially the same as the order in which controls are created, except that buttons and
labels are not included in the tab ordering 5 . The tab order can be changed by right
clicking in a block (when in design mode) and selecting the Set tab order item. This
displays a dialog such as is show below (this actually being for the Clients form):

The left-hand list box shows controls which are not in the tab ordering (ie., which
cannot be reached by tabbing); the right-hand list box shows those that are, with the
tab ordering being the order down the list. Controls can be moved between lists; if a
control is selected in the right-hand list then it can be moved up or down. In addition,
controls can be automatically ordered by column (Rekall tries to order so that tabbing
goes down successive columns) or by row (Rekall tries to order so that tabbing goes
across rows). Automatic ordering depends on the exact layout of controls, and the
tolerance setting defines how well aligned two controls have to be to be considered to
be in the same column (or row).

Note that the tab ordering applies to controls corresponding to the same row of data
in the server database. So, if you have a form which displays multiple rows of data,
tabbing will work though all controls for one server database row before moving to
another.

If you tab forward from the last control in the tab order, then Rekall moves on to
the first control in the next row of data from the server database, while back-tabbing
(shift-tab) from the first control will move to the last control for the previous row of
data from the server database.

Movement between server database rows is accomplished using the up and down
cursor keys. If the form is displaying multiple rows of data then it will scroll as ap-
propriate. Also, assuming that the block auto-sync property is set 6 updated rows are
automatically saved whenever focus moves to a control in a different row. In addi-
tion, the Ctrl-Return (or Ctrl-Enter) key combination saves the current row.

The toolbar has controls which can be used to navigate between rows. These are
actually the same as appear for a table in data view, but are shown again below.

Go to first record

Go to previous record

Go to previous record

Go to last record

Insert record

45

Chapter 5. Designing and Using Forms

Delete record

Save record

Start query

Execute query

Cancel query

Reload form data

With the exception of the save record tool, all the tools operate on the block which
contains the control which currently has focus, or the outermost block if no control
has focus.

The insert record tool opens up an empty row in front of the current row. This is simply
a row into which data can be entered; its position does not imply anything about
where the record will be saved in the server database (and, if you have a order by
expression in the query which retrieves data, then if you requery the server database
the record will be subject to that ordering).

The save record tool operates on the entire form. In essence, it does a save at the outer-
most block level; the block will in turn do a save on any nested blocks, and so forth.

The start query tool is used to start a query. Clicking this tool will clear all the control
in the current row. You can enter data into some of the controls, and then click the
execute query tool. Rekall will then search for all server database records which match
the entered data. Controls can be left blank, in which case they play no part in the
query; otherwise, the data in the server database record must match exactly, with the
exception of text entry controls. In this case, the % character can be used as a wildcard
7 (so M% would match Mike and Michelle but not Adam Miles). The query can be
cancelled with the cancel query tool. Query terms like >100 are not yet implemented.

In addition, you can enter query terms like < 10, using the operators < (less than),
> (greater than), <= (less than or equal to), >= (greater than or equal to) and != (not
equal).

Note that when entering data for a query, control verification and not-null checks are
not applied. This does mean that you can enter somthing like >silly in a numerical
value.

The full set of keyboard navigation keys is:

Tab, Enter Go to next field, or next row if at last field

Shift-Tab Go to previous field, or previous row if at first
field

Cursor-Up Go to previous record

Cursor-down Go to next record

Ctrl-Cursor-Up Go to first record

Ctrl-Cursor-Down Go to last record

46

Chapter 5. Designing and Using Forms

Ctrl-Enter/Ctrl-Return Save record

Escape Cancel changes to row

Menu-Only Forms
The demonstration Orders database has a main form which does not show any data,
and only has buttons which open up the other forms and reports in the database.
This is an example of a Menu-Only form. To get a menu-only form, set the Top level
block type property in the form to Menu block. The resulting form can have buttons
and labels, but does not allow any data controls.

Below is the main form from the demonstration Orders database. In this example, the
area which contain the buttons are nested menu-only blocks, in order to be able to
add frames and coloured areas to the form. This effect could equally well be achieved
with containers.

Notes
1. Also, the form as a whole is not actually saved in the server database or file system

until you explicitely save it.

2. The table design and data display screens are really forms. The one for table de-
sign is embedded in the code, and the one for data display is generated at run
time to match the table.

47

Chapter 5. Designing and Using Forms

3. Double-clicking for the properties dialog currently does not work on the QT3/KDE3
builds, due to internal QT changes. This should be fixed in the next release.

4. Tab and shift-tab do not work in memo controls, since you might want to actually
enter a tab as data.

5. You can however create a button with text like &Click Me!, in which case the C
will be underlined, and the key combination Alt-C will be equivalent to clicking
the button.

6. Auto-sync is the default. Currently, there are a number of problems associated
with clearing the auto-sync property; for instance, data may be lost if an updated
row scrolls out of view. It is recommended that you leave this property set.

7. This will probably be changed to * (or an option provided to select which) in a
future release of Rekall.

48

Chapter 6. Queries

When a form or report is designed, it can retrieve data from one of three places;
directly from a table (as demonstrated by the forms in the previous chapter), from
a free-text SQL query (which will be described later), or from a Rekall query. It is
probably true that while forms are most likely to access tables directly, reports are
more likely to use free-text SQL queries or Rekall queries. For this reason, this chapter
concentrates on latter, before we move on to reports.

To reiterate what has been said earlier, there are two ways that the term query can
be used, either in the context of an SQL query (select ... from ...) or in the context of a
Rekall query. This chapter talks about the latter (although, untimately, a Rekall query
is used to generate an SQL query which is executed by the server database).

A Rekall query essentially sepecifies a set of tables (possibly only a single table), a set
of relationships between them, and a set of SQL expressions; the latter may be used
to specify data to be retrieved from the tables, or for functions such as ordering or
filtering. These component parts are combined to generate the SQL query. In addi-
tion, however, when Rekall queries are used in the design of forms and reports, Rekall
can use the relationships between the tables to arrange the data in form-subform (or,
analagously, report-subreport) structures.

Rekall does not have anything equivelent to the update, insert or delete queries pro-
vided by Microsoft Access. These will probably be added at a later date, but you will
be able to achieve the same funcionality directly via python scripts and the interface
between python and the server databases.

This section starts by describing the construction of a query which retrieves data from
the demonstration Orders database.

Creating Queries
The query which is designed in this section retrieves data simultaneously from the
Orders, Clients and Products tables. Since the contents of these tables is logically linked
using the products and client keys, the basic SQL query will look something like
(where ... is replaced by whatever fields are needed).

select
from Client, Orders, Products
where Orders.ClientID = Client.ClientID
and Orders.ProductID = Products.ProductID

To create a new query, go to the Query tab, open the appropriate branch, and double
click the Create new query item. This brings up a new window; select a server database
from the top-left combobox 1 , and the window will appear as shown below:

49

Chapter 6. Queries

The left-hand listbox shows all tables for the selected server database. The top-right
area will in due course show the tables used in the query and their relationship. The
middle area is used to add expressions and critria such as filtering (SQL where terms)
and ordering, while the lower area will show a skeleton of the SQL query that will
be generated. Since this query requires all three tables, double-click in turn on each
Client, Orders and Products (in that order). You can see that as changes are made, the
SQL query text changes to match. With a bit of repositioning, the window should
now look like:

50

Chapter 6. Queries

If you need to set a table alias (so that the SQL will look something like select from
Client C, ... then right-click in the table field list, and select Set Alias from the popup
menu. This popup also contains Delete entry which can be use to remove a table.

The next stage is to add links between the table which specify the SQL query join
conditions. First. two things to note. Currently, Rekall does not store any table re-
lationship as other database front ends do, not does it access any key/foreign key
information that may be stored in the server database, so you need to add the links
each time; a relationship editor will be added to a future release of Rekall. Secondly,
Rekall currently only allows links where one end of the link is a primary key (you can
see which these are, as Rekall marks them with a key icon).

Links are added simply by dragging and dropping, so drag and drop from Client.ClientID
to Orders.ClientID, and from Orders.ProductID to Products.ProductID.

We can also add some filtering or ordering criteria. The Expression column should
contain a valid SQL expression. The Usage column in the middle area can be set to
one of the values below (if you click in it then it will change to a combobox):

• Sort ascending: the expression is used to sort rows in ascending order.

• Sort descending: the expression is used to sort rows in ascending order.

• Where: the expression must be valid for use in an SQL where term.

• Group by: the expression must be valid for use in an SQL group by term.

• Having: the expression must be valid for use in an SQL having term.

• Blank: this is simply a way of defining an expression which will can be used when
the query is accessed from a form or a table.

51

Chapter 6. Queries

You can quickly enter columns into expressions (in the form table.column bu dragging
from a column in a table to an expression area; expressions can be deleted by right-
clicking and selecting Delete. Again, the text in the lower panel will change to reflect
changes made to the ordering and filtering criteria. The next screenshot shows the
query with a few expessions added.

By default, when you display a query in data view, it will show a column of data for
each column in each of the tables in the query. If, however, you have one or more data
expressions (the last case in the list above) then in data view you will see only those
expressions. If you want to see some specific expressions and also see all the columns,
then add the expression *; this is analagous to the SQL select * from ... notation.

Unlike some other databases, it is not necessary to specify which columns (or, more
generally, expressions) the query returns. When you use the query when designing
a form or report, you will be able to select any column from any of the tables in the
query (or any expression that uses them). Rekall will always construct the apprpriate
SQL query. However, as above, you can add arbitrary expressions which will can be
selected when designing a form or report; this may sometimes be convenient.

A query can be viewed in data mode just as a table. Although a query can be used in
a form to retrieve data in a structured way (much like the linked tables in the Orders
form - more on this later), the query viewer will "flatten" out the data, so that one row
will be displayed for each row retrieved from the database. By the way, although you
can switch a form between design view and data view without saving the form, you
cannot do this with a report; if you try to switch to data view and the form as been
modified, you will get a warning.

52

Chapter 6. Queries

There are two caveats. Firstly, Rekall does not allow new rows to be inserted where the
query contains more than a single table. This may be relaxed in a future release, but
the semantics of doing this are not obvious (because of the join conditions between
the tables). Secondly, it is not sensible to update values in columns which are used
to relate the tables, since this might break the linkage displayed by the query viewer;
these columns are displayed with gray backgrounds. 2

One final note. You should not make any assumptions about the order that the server
database will return rows if you do not specify any ordering. In the example, you
should not assume that all rows corresponding to a client will be returned contigu-
ously.

Joins: Inner, Outer and none
By default, Rekall creates queries over multiple tables using inner joins. However,
you can change the join type between two tables to either right outer or lft outer by
right-clicking on the link. This brings up a dialog box as shown below:

This dialog can also be used to delete a join. Note that if you attempt to save a query
which has tables that are not connected, then Rekall will warn you and ask if the query
should be saved anyway. You might want to do this if you really do want the query
to return all row combinations from two (or more) queries, or it may be that the join
condition is much more complicated and is defined as an explicit where expression
(but if this is the case, Rekall cannot deduce any structure and queries will always be
executed "flat" 3).

Using a Query in Forms and Reports
When the query is actually used (in a report described in the next section), then it is
used in a context which provides some additional structure at the Rekall level. To do
this, Rekall allows the selection of a "top" table and then, on the basis of the relation-

53

Chapter 6. Queries

ships between the tables, will work out a sensible grouping. For instance, the Clients
table is chosen as the "top" table, then the report would be constructed as a report-
subreport with clients in the report, and orders and products in the subreport (ie., the
report will group orders up by client). Conversely, if the Products table is chosen, then
the report will group orders up by product. Finally, if you chose the Orders table then
a simple flat report would result.

Bear in mind that this grouping is indepenent of any group by or having expressions.
Essentially, Rekall uses the relationship information to decide on a grouping, and then
groups up the data as it is retrieved from the server database. For instance, if the
Clients table is chosen as the "top" table there the data will be grouped up on the
basis of the primary key value from the Clients table.

The query properties dialog that appears when you use a Rekall query in a form or
report has a property Top-level table which is used to select the top table. The dialog
will show a illustration of the effect of choosing a particular table; in the screenshot
below, the Client table has been so chosen:

Lastly, when you use a Rekall query in a form or report, there are options to set ad-
ditional where and order by expressions. These modify the query for just that form or
report.

Free-Text Queries
Rekall also includes support for free-text queries. These are accessed by setting the
top-level block type to SQL block, or by inserting an SQL block into a form or report.
The free-text query is specified by a server database and the text of the SQL query
itself.

The query must start with select ... from. Rekall parses the query in order to extract its
component parts. The parser is fairly loose, for instance it will accept anything other
than a keyword between the select and from, so a query that Rekall thinks is valid may
be considered invalid by the server database 4. The property dialog for a free-text
query has a Verify button that can be used to check the query.

Since Rekall parses the text of the query, when it is used in a form, Rekall will gen-
erally be able to save changes, that is, perform appropriate server database updates.
However, it will only be possible to insert or delete rows if the query accesses a single
table. Also, since Rekall cannot see any relationships between the tables in the query
5 there is no structure information which allows the selection for a "top" table, and
data will be accessed simply as a set of rows.

54

Chapter 6. Queries

Notes
1. As for forms, if you select Self as the server then the query will access tables which

are in the same server database as the query is stored in.

2. Actually, Rekall will not allow you to update columns which show primary key
values, however you can try to update the related key values (ie., in the above
example, you cannot update the Client.ClientID column, but you can try to update
Orders.ClientID.

3. A future feature is to allow an arbitrary expression to be associated with a link;
this will give the best of both worlds.

4. Conversely, it is just about certain that there are queries that Rekall does not parse
but which are valid. Please let us know if you experience problems in this respect,
and we will extend the parser appropriately.

5. This might be possible in a later version of Rekall, once there is either a relation-
ship editor, or access is available to any relationship information stored in the
server database.

55

Chapter 6. Queries

56

Chapter 7. Designing and using Reports

Rekall allows you to design and run reports in much the same way as you design
and run forms. Reports are like forms, and can take data directly from tables, or from
Rekall queries (or free-text queries), and like forms, display data in controls what
are embedded in the report. Again, analagously to forms, reports can contain nested
blocks.

Reports can be designed to produce output to various sizes, so you can output to
different paper sizes. Also, if you are using KDE version 2.2 or later, then you have
all the functionality provided by the KDE print system, so output can be sent to files
in PDF or PostScript format, as well as being physically printed.

Creating a Report
The report that is designed in this section shows a summary of outstanding orders.
This is rather like the Orders form, and contains an outer block (which shows the
Client table) and an inner block (into which details of each order appear). This is the
OrdersSummary report in the Orders demonstration database.

A report is created using the New Report entries under the However, unlike the Orders
form, this report gets its data via the query from the previous section; select Query
Block as the Top-level block type in the first report dialog, which is shown below. This
dialog also allows you to set print margins. The values are initially set to defaults,
which can be changed via the View/Options menu on the main database dialog.

Having clicked OK on the report dialog, a dialog for the query appears. The settings
for this are listed below, and the dialog is shown in the following screenshot. Note
that there are a set of properties Where condition, Row order, Row grouping and Having;
these are appended to the Rekall query and can be used to customise the query for the
purposes of the report (although, beware that it would be possible to create invalid
queries).

Property Significance Setting

Query
name

Rekall query to be used to supply data OrdersSummary

57

Chapter 7. Designing and using Reports

Property Significance Setting

Top-level
table

The table in the query which is used to supply data
for the outermost report block.

Clients

Row
Order

Additional SQL query ordering expression. Client.Company

Note also the Row order setting. Even if you were not really bothered about the order,
you would still need something which orders the clients, such as comany name or
ClientID. This is because there is no gaurantee that the server database would other-
wise return data with rows at least grouped together by company (so the report might
show a page for some orders for company A, then some for B, and then another for
A). In this example an order has been added here, but the order could equally well
be set in the OrdersSummary query itself. The advantage to setting it here is that Or-
dersSummary could then be used in another report which shows client orders for each
product (as opposed to product orders for each client), with the Row order property
set to Product.Description.

Clicking OK in this dialog will lead to the third dialog, the block dialog. This is similar
to a form, although some properties are not present, for instance there is no row count
and no control spacings. The former is not needed since a report will always generate
as much output as is needed for the data, and the latter since spacings are controlled
by the layout in the design. Clicking OK once more leads to a blank report, shown in
the following screenshot.

58

Chapter 7. Designing and using Reports

Some explanation is in order here. Because of the choice of a Rekall query as the top-
level block type, and the choice of the Client table as the top table within that query,
Rekall has created a report with a sub-report, and has created the blank report with
a nested block (the sub-report) already in place. Rekall has also added headers and
footers at both the report (Client table) level and at the sub-report (Orders and Product
table) level. These are tagged to the right, with the number at the end indicating the
blocking level within the OrdersSummary Rekall query. Had you set the top-level block
type to access a table or a free-text SQL query, then there would have not been any
sub-report (and the tags would change appropriately).

There are two things to notice about blocks in reports. Firstly, they all have the same
width, and are all aligned to the left. This is because of the way that reports are gener-
ated; output is produced row-by-row, advancing down the page and throwing pages
where needed. Secondly, they do not have the dx nor dyproperties; movement be-
tween rows is always down the page, and the distance is controlled by the height of
the block less the height of the header and the footer (since the block is generated
once for ecah row).

Essentially, a report is executed by processing each row that is retrieved from the
server database, generating output as needed. In this report, since the data comes
from a Rekall query, and the Client table has been set as the top table, execution can
be thought of as iterating over each client (in the top level block), and for each client
iterating over each order (in the nested block). Page throws are controlled by the Page
throw block properties, according to the table below:

None Page throws only occur when a page is full

Group A page thown occurs after the last record

Record A page throw occurs after each record

59

Chapter 7. Designing and using Reports

In the Orders demonstration database, the Page throw property of the inner block is
set to Group. Since last record is interpreted as meaning the last order record for the
current client, there will be a page throw between clients (plus, of course, page throws
if a page becomes full). Each time a page is thrown, footers are output for the block
that is processing records, and all enclosing blocks, and headers are output similarly.
Rekall keeps track of the amount of space needed for the footers and headers 1.

The image below shows the report at an early stage of development. A few basic
controls have been added, and the sizes of the blocks, and headers and footers have
been changed a little. In this state, executing the report would place the title Orders
Report and the top of each page, followed by the company and contact names for the
client, and a set of column headings.

The remainder of the controls can are now added, as shown in the screenshot a little
further on. Various of the controls are noteworth. The Quantity and Value controls
top the right of the Total label are Summary controls. These are like normal fields, but
accumulate information, and have a property Summary function which controls their
behaviour; currently, total, minimum and maximum are supported. Summary controls
are always reset when the block in which that are embedded is finished (note that
headers and footers are two other examples of containers, so controls that are embed-
ded in them are associated with the block the the header or footer is embedded in).
They also have a property which controls whether they are reset each time a page is
thrown (so you can do per-page summaries or running summaries).

The bottom-left control is a field, however its Display expression (ie., the expression
which is retrieved as part of the server database select query) is actually set to ’Page
%{pageno} of %{pagecount}’. This value retrieved will be exactly this string for all rows
retrieved, but just prior to it being output, the %{.....} parts are substituted with the
page number and the total page count.

The top-right control is similar, but with its Display expression set to =time.strftime("%d-
%b-%y", time.localtime (time.time())). This is actually a very small piece of python script,
specifically it is a python expression and, rather than forming part of the select query,
the expression is evaluated each time a value is needed, and will return a formatted
date-and-time string 2

60

Chapter 7. Designing and using Reports

From here, you can switch to data view to display and print the report.

Printers and Printing
In a simple situation, you may have a single printer which only ever has a single
type of stationery in it, and this printer is the default for all your applications. On the
other hand, a the situation might be more complicated, perhaps there is a one printer
loaded with pre-printed A4 paper, a second with A5 paper, and a third containing
labels. In this case it would be anoying (and maybe error prone) for the user to have
to select the appropriate printer whenever they print a report. To make life more
difficult still, suppose that the three-printer Rekall application is to be installed at
more than one site, and that the printers are named differently at each site (maybe
different models of printers are used, or at one site printers are local while at another
they are networked).

Rekall provides a mechanism to handle this gracefully, in which you can define log-
ical printers, and then specify which logical printer a particular report. All that is
needed when installing a Rekall application at a particular site is to configure the log-
ical printers appropriately. You can think of this as a more sophisticated equivelent
of the Print Setup ... functionality found in other applications. Of course, for the sim-
ple single printer situation, you can ignore all this, and Rekall will behave much like
most other applications; when you press the Print button, the standard print dialog
will appear.

Logical printer configuration is accessed via the View/Show objects menu. This brings
up a dialog which can be used to quickly access objects such as tables and forms, as
well as printers. To create a new logical printer, select Printers as the object type and
choose the server where the definition will be stored; as usual the !Files entry means
that the definition will be stored in the file system 3 . Then click Create. This will bring
up the standard print dialog 4

61

Chapter 7. Designing and using Reports

The required settings for the logical printer (printer name and properties) can be
set as normal, but when the Print button (or OK button) is pressed, rather than any
printing taking place, a save dialog will appear into which you can enter a logical
printer name. This name is completely separate from the real printer name, but if
you were printing in greyscale and in landscape on an A5 printer then you might use
the logical name LandscapeA5Grey.

Logical printer settings can later be changed, or deleted, again via the View/Show
Objects menu. There is no mechanism to rename a logical printer, but you can edit
it (leaving the settings unchanged), save it under a different name, then delete the
original.

A logical printer can be specified as one of the properties of a report. When a report
is printed, the printer is determined as below. There is also a report option used to
specify that the print dialog should always be shown.

• If no logical printer is specified but there is a logical printer named Default (note
that the name is case sensitive) then the settings associated with Default will be
used.

• If no logical printer is specified and there is no logical printer called Default then a
standard print dialog will be shown.

• If a logical printer is specified and one exists with that name, then the settings
associated with that logical printer are used.

• If a logical printer is specified but one with that name does not exist, then a warn-
ing is displayed and the standard printer dialog is shown.

Design View, Data View, Print and Preview
A report can be displayed in design view or data view. Design view, which has been
described above, is where you design the report.

Data view is essentially a preview mode, where the report output is displayed in a
window in the screen, one page at a time. Rekall takes note of printer settings to derive
the page size, and converts these to screen sizes. Rekall does its best to generate output
that is the same physical size as would be physically printed, but this may not be
completely accurate, and you should not rely on the size that appears on the screen.

You can toggle back-and-forth between design and data view. In both views, the tool-
bar shows a printer tool. In data view this will print the report; in design view it will
print the report design 5. By the way, you may have noticesd that printing is avail-
able for forms, in both design and data view; in design view then the form design is
printed, while in data view the form and its current content are printed.

Right-clicking on a report under the reports tab of the main database dialog wll bring
up a popup menu which has, in addition to the Data View and Design View options, a
Print Report option. This can be used to print a report directly without going via data
view.

62

Chapter 7. Designing and using Reports

In addition, unded KDE from release 2.2 onwards (ie., the releases which have the
KDE print dialog rather than the QT print dialog), report printing can be previewed
by using the preview option in the print dialog. In this case, Rekall generates print
output exactly as is would if the preview option were not selected, and the preview
function is then handled by KDE’s print system.

Notes
1. The situation where the space required for the headers and footers is such that

there is no space left on the output page is detected, and treated as an error!

2. To get this to work, the Import modules property of the report must be set to include
time. This is explained in the chapter on scripting.

3. In keeping with most other Rekall objects, the definition is stored as XML, so you
can look at it or even edit it by hand.

4. The appearance of the dialog, and the control which it provides will depend on
which version of Rekall and which version of KDE you are running. For the QT-
only version of Rekall, and for KDE versions of Rekall on KDE 2.1.x, you will see
the QT printer dialog. From KDE 2.2.x onwards, you will see the KDE printer
dialog. Rekall stores most settings that the print dialog provides.

5. This is currently rather basic, and will be improved in a later release.

63

Chapter 7. Designing and using Reports

64

Chapter 8. The Structure of Forms and Reports

To go further with designing forms and reports, it is useful to know something about
the way Rekall structures these internally, what types of objects can be embedded into
forms and reports, and the settings that apply to each type of object. This is covered
in this chapter.

The first two sections in this chapter outline describes the types of objects.

Form Controls
The various types of control than can be embedded into a form are listed below. Note
that the data control (Field, Memo, ...) are not available in a Menu (null) block.

Field
A field is a simple one-line text entry control. You can set various properties such as
font and colour.

Normally, a field is implemented as a QT line edit control, but fields can be morphed,
that is, when input focus is not in the field then it is handled directly by Rekall. This
is provided mostly for use in table data views where there are a large number of
columns (and hence fields) displayed at the same time, whence morphing makes
screen update much faster.

Memo
A memo is a multi-line edit control. In the current release of Rekall it does not do
anything clever like word wrapping. Note that when in a memo control, tab insertes a
tab character, rather than moving focus to the next control.

Note that Rekall currently lacks proper multi-line control for use in reports. This will
be addressed in a future release.

Choice
A choice control is a combo-box which displays a defined set of options (stored as one
of the properties of the combo-box).

65

Chapter 8. The Structure of Forms and Reports

Choice controls can be morphed, as for field controls; when input focus is not in the
choice control, then it displays as simple text. This can be useful if space is limited,
since the combobox drop-down arrow does not usually display.

Link
A link control is also a combo-box, but rather than have a defined set of options, it
displays values from another table. You specify a target table and a column in the
target table contains values that are stored in the table or query to which the link
control refers, and an expression based on columns in the target table; the expressions
are displayed as the options in to combo-box.

For instance, suppose you what to store a person’s title (for instance, Mr, Mrs, and so
forth), but that you are not sure in advance that you know all possible titles. So, you
create a Title table that has two columns, one a primary key and the other the title.
Then, in say a Client table, there is a title column whicn stores primary key values
from the Title table. In a form you then use a link control which matches the Client.title
column to the primary key in the Title table, and displays the title text.

This has the advantage that to add a new title, you just add a new entry to the Title
table. Indeed, by changing the title text in the Title table, you could change all the
titles from, say, English to German.

Link controls can be morphed exactly as choice controls.

Pixmap
A pixmap control can display an image. Rekall knows about a reasonable selection of
image types 1

Check
A check is a simple yes/no checkbox. Note that the checkbox itself does not include
a label (unlike the underlying QT checkbox control), so in the illustration below, the
label is a separate object.

66

Chapter 8. The Structure of Forms and Reports

Rich Text
This control is displayed using the QTextView widget provided by the QT toolkit. It is
mainly included for future use in Rekall itself, to display help information and such
like. Text to be displayed in this type of control should be formatted as QT Rich Text
(see Troll Techs documentation for details), which is basically a very much stripped
down HTML.

Row Mark
Rowmarks do not display actual database data. Rather, they are used as a per-row
marker, and show icons to indicate the current record and whether the record has
changed. In addition, they can be set to show a row number.

Label
This is a text label. Label text can be formatted as QT rich text, for instance the il-
lustration below shows the text underlined. The text is fixed except that it can be
changed from a script.

Button
A button is a standard button control. For it to do anything it needs to invoke a script,
although there are the shortcuts like #Click described in a previous chapter to handle
simple operations.

67

Chapter 8. The Structure of Forms and Reports

Tab Control
A tab control is a container object which can contain one or more pages, each of which
is associated with a named tab. Once you have created a tab control, you can add
pages; the pages themselves are in effect containers, into which other controls can be
placed.

All data controls in all pages of a tab control are in effect embedded in the block
into which the tab control itself is embedded. So, for instance, if the block takes data
from a table which has a large number of columns, you can use a tab control to show
different sets of columns under different tabs.

Container
As well as the tab control, a form can also embed a simple container object. There are
two main uses for this.

Firstly, if you wanted some control to appear in an area of the form which has a dif-
ferent background colour, or perhaps shows as a raised or sunken panel, you can
create a container. The container is given the required colour or effect, and the con-
trols placed into the container. The main menu form of the RekallDemo database uses
this technique for the bottom-right area (the other three areas are actually menu-only
blocks, but the effect is the same in this situation).

Secondly, if you have a form which has the property of being Stretchable, then you
can use a container with suitable X-mode and Y-mode stretch properties to get various
resizing effects.

Report Controls
Unlike a form, a report can "display" an arbitrarily large number of rows of data,
depending only on the number of rows returned from the server database. The basic
mechanism is that the report retrieves data for its outer block, and then writes one
set of values for each row. If the outer block contains a nested inner block, then it will
perform the same for the nested block, repeatedly for each row fetched by the outer
block (and so on if there are further nested blocks).

The report also output headers and footers at the beginning and end of a block, and
whenever it starts a new page. It will start a new page either when there is insufficient
space left on the current page for another row and the footers of the current and outer
blocks. You can also set a block to start a new page (irrespective of whether there is
sufficient space left) for every record, or to start a new page immediately after the last
row is output.

For each row, the report advances down the output page by a distance equal to the
height of the block in the report design, less the height of the block header and footer.

68

Chapter 8. The Structure of Forms and Reports

Field
A field control is a simple one-line text control. You can set various properties such as
font and colour.

Link
This operates like a link control in a form, except that the linked value is output in
text.

Pixmap
A pixmap control can display an image. The same set if image formats will be avail-
able as for a form pixmap.

Summary
A summary control is a simple one-line text control like a field. However, rather than
display individual values, it calculates a summary (currently, min, max and total are
supported).

A typical use is in the footer of a report block, where it can be used to generate a
summary from each row which is output as part of the block.

The control can be set to reset on every page throw (for per-page summaries); other-
wise, it effectively resets at the end of the block in which it is embedded.

Label
This is a simple text label. Unlike a form label, the text is not displayed as QT ricj text.
The text is fixed except that it can be changed from a script.

Headers and Footers
The report designer automatically adds headers and footers to blocks which it con-
siders to be large enough 2. Headers are footers can contain any of the above controls.

Forms and Reports are Trees
To save text, in this section we’ll refer to forms, but unless explictely mentioned, this
applies to reports as well.

A form is organised as a tree of objects. The top-most level object is the form itself,
and contains information which is global to the form (for instance, the form caption).
A form is also a special case of a block.

A block is the most important sort of object. It is aa object in which other objects are
displayed, and it is the point at which data is retrieved from the server database,
displayed and possibly updated. A block can contain controls such as fields (simple
text entry), images, and so forth.

69

Chapter 8. The Structure of Forms and Reports

A block can also contain subblocks; this provies the form-subform structure (and
similarly report-subreport). Note that this can in principal be nested to any depth,
and a block can contain more than one subblock. Blocks also handle some special
controls, such as rowmarks .

A block in a form can also contain explicit containers. These can be used for layout and
presentation (for instance, a block might have a grey background, but include a con-
tainer with a yellow background). Note that so far as retrieving data from the server
database is concerned, control that appear inside a container is logincally within the
block that encloses the container.

A block in a report can have a header and a footer, as noted above. These are special
cases of containers.

Objects are Classes
Rekall objects themselves are structured like classes in an object-oriented language;
for instance, as mentioned above, a form is a special type of block. The complete
structure is shown below; hence KBItem, KBButton and KBLabel are special cases of
KBObject. Those marked with an asterisk never exist in their own right, but only as
part of some more specialised object (in object-oriented terms, they are abstract base
classes).

The names are all prefixed by KB for historical reasons.

• KBNode*

• KBObject*

• KBItem*

• KBBlock*

• KBFormBlock

• KBForm

• KBFormSubBlock

• KBReportBlock

• KBReport

• KBReportSubBlock

• KBField

• KBChoice

• KBCheck

70

Chapter 8. The Structure of Forms and Reports

• KBLink

• KBPixmap

• KBMemo

• KBRowMark

• KBHidden

• KBButton

• KBLabel

• KBFramer*

• KBHeader

• KBFooter

• KBContainer

• KBTabber

• KBTabberPage

KBNodes, KBObjects and KBItems
KBNodes, KBObjects 3 and KBItem never exist in their own right, rather they only exist
as part of some other real object such as a KBButton. However, they contain informa-
tion which is mostly common to the real objects.

KBNode
A KBNode is at the bottom of the hierarchy of classes. Nothing of it is visible to the
outside world except for the Notes property (which can be used to annotate a node,
for instance for documentation, but is otherwise ignored by Rekall).

KBObject
A KBObject occupies some area of the display, and hence has properties like position
and size. It can also have a name which can be used in scripts to identify and mani-
plulate a particular object. In practice, names should be unique amongst objects at a
given level in the form or report hierarchy (for instance, amongst all the objects which
are children of a particular block), although Rekall makes no attempt to enforce this.

71

Chapter 8. The Structure of Forms and Reports

KBItem
A KBItem (think data item) is an object that occupies display area, and contains data
which generally (though not neccessarily) comes from the server database. As such
it has properties like an expression which is used to specify the required data; it also
has event properties which are trigged when, for example, a data value is set.

Note that a KBItem may actually hold several date values. This occurs when the
KBItem is embedded in a block which is displaying more than one row from the
server database (so in item may be instantiated as one or more data controls).

KBBlock and Friends
As alluded to before, the KBBlock object is the most important type of object in Rekall.
First, however, note that a KBBlock never exists in its own right: in a form is will ap-
pear as a KBFormblock (or KBFormsubblock, see below) or in a report as a KBReportblock
(or KBReportsubblock, see below). However, we will use KBBlock as shorthand.

Unless the KBBlock is the outermost, it itself holds a value from the enclosing KBBlock,
in exactly the same way as a KBField or any other control which displays data. The
difference compared to these controls is that the value is not actually displayed. In-
stead, the value is used when forming the SQL query that retrieves data for controls
which are enclosed in the nested KBBlock. In the form-subform examples earier, the
inner block (ie., the subform) was set to retrieve ClientID from the outer block (the
Parent field setting), and link this to ClientID in its own query (the Child field setting).
Hence, the query generated for the inner block would be like:

select ...
from Orders
where Orders.ClientID = value

where value is the ClientID value from the Clients table which is shown in the outer
KBBlock. As you step through records in the outer block, the query for the nested
block is repeated to get the correct set of orders for the client now being displayed.
Confused? Fair enough. I have to think about it each time I revisit the code. But it
works! If you bring up the query log window (via the scroll-and-Q toolbar icon, you
can see the text of the queries as they are executed.

A block can display a single row of data at a time, or it can display more than one;
one of the properties of a block is the number that should be displayed. A special
case is if this is set to zero, in which case the number of rows is calculated to just fit
the space available.

There is one further subtlety. Normally, in a form-subform arrangement, the outer
block (the form) would show exactly one row of data (such as a client), and the inner
block (the subform) would show multiple rows (such as orders for the client). How-
ever, in Rekall, the outer block can, if you wish, display more tha one row. In this case
the inner block displays rows of data related to the current row in the other block - if
you think about it, the outer-one-row situation is just a special case of this, where the
current outer row is always the one displayed.

Why would you want to do this? Suppose you have a form which shows several rows
of clients information, but you would also like to display a notes memo control for
just the client corresponding to the row which is current at any given time (because
this field will take up quite a lot of space). You would add a nested block which also

72

Chapter 8. The Structure of Forms and Reports

retrieves data from the clients table, with the inner and outer blocks linked on the
client identifier; this means the select query for the inner block is

select Notes
from Client
where Client.ClientID = value

with value being the current client identifier from the outer block. The inner block
need only display a single row. This is shown in the screenshot below. Note that the
outer block has a container whose Y-mode is set to stretch, and the inner block has Y-
mode set to float; this means the form height can be changed by the user with sensible
results.

Data Controls
The data controls are things like KBField, KBMemo, etc., which (usually 4) take data
from the database and display it on screen (or in a report).

In a report, data is output from the database row by row, so a block will end up
showing as many rows of data as are forthcoming. However, in a form a KBBlock
may display more than one row of data at a time. In this situation, the data control
holds as many values as there are rows of data on display, and there will be multiple
instances of the control shown (ie., a KBField may correspond to several line edit
controls).

All data controls have a common set of operations and settings which specify how
they relate to the server database. Individual types have their own specific settings.
For instance, a KBPixmap has a setting for a frame to be drawn round the image,
which a KBChoice has a set of possible values.

The KBHidden control is special, in that is does not actually display. Rather, it can be
used if you need to retrieve a value from the server database for use in a script, but
which does not need to be displayed to the user.

73

Chapter 8. The Structure of Forms and Reports

Containers: KBHeader, KBFooter, KBContainer, KBTabberPage
These objects are containers for other objects. The KBHeader and KBFooter objects are
used as headers and footers respectivly in reports, and do not appear in forms. A
KBContainer is used as a container in a KBFormblock and does not appear in reports.
A KBTabberPage is a page within a tabbed control (actually, the tabbed control it itself
a container, but the only object that it can contain are pages).

The essential purpose of a container is to provide a means of grouping together some
controls. The controls really belong to the KBBlock in which the container is embed-
ded, but their position is controlled relative to the container and not the KBBlock itself.

One use of a container is for report headers and footers. The header is a container
which is set to have the same width as the block in which it is embedded; the footer
similarly has the same width, but is locked to the bottom of the block.

Another instance of a KBContainer is the upper part of the table design form. The
lower half of this form is a subblock, which set to have fixed height but to stick to the
bottom of the form. The upper half is a KBContainer, and is set to change in height as
the form is resized. As it does so it adjusts the number of rows of data (in this case,
information on table columns) that are displayed. Note that, when a block with a zero
rowcount calculates how many rows to display, it calculates the values for itself and
for any embedded containers, and uses the minumum number.

Notice that the containers are special cases of KBObject, rather than KBItem, since the
containers themselves display no data.

Forms and Reports
Lastly, at the top of the pile, as it were, are the KBForm and KBReport objects. These
contain settings that are global to the form or report, for instance what scripting lan-
guage to use (currently only Python is supported), and what script modules to load.

Properties
Properties are what control the behaviour of objects in Rekall forms and reports. Loosely,
these can be divided into two groups, event properties and non-event properties. The
former are used when you add scripting to forms and reports, and are covered in the
chapter on scripting; the remainder of this chapter describes, in more detail, the non-
event properties that are more frequently used. The first section covers properties
that are more or less common to a number of objects; following sections cover those
that are specific to individual objects. A summary of all properties can be found in an
appendix.

The names in brackets are the actual property names; these are used by the getAttr
method described in the next chapter.

Common Properties
The properties listed in the section are more-or-less common to all objects, although
there are exceptions (for instance, KBForm and KBReport do not have an X-position
nor Y-position).

74

Chapter 8. The Structure of Forms and Reports

Notes
This property appears in all objects. Rekall ignores it, but preserves its value. It is
mainly intended for documentation. You might use it to store information which a
script can retrieve 5

X-Position, Y-Position, Width and Height (x, y, w, h)
These properties specify the location of the object on screen, relative to the object that
that they are embedded in. The default is absolute position of the top-left corner, and
absolue size, but note the X-mode and Y-mode properties below.

The X-position and Y-position properties do not appear for the top-level block (ie.,
for what is really a form or report object).

X-mode and Y-mode (xmode, ymode)
The X-mode setting controls the way that the object responds to changes in the width
of its parent; the three posibilities are:

• Fixed: the object’s position and width are not affected by changes in the parent. The
X-position and Width settings are the offset of the left-hand edge of the control from
the left-hand edge of the object in which it is embedded, and its width respectively.

• Float: the object’s width stays constant but it remains a constant distance from its
parent’s right-hand edge. In this case the Width setting is the objects width, but
the X-position value is the distance from the right-hand edge of the control to the
right-hand edge of the object in which it is embedded.

• Stretch: the object’s position stays constant but its width changes to match that
of its parent. The X-position value is the offset of the left-hand edge of the control
from the left-hand edge of the object in which it is embedded; the Width setting
is distance from the right-hand edge of the control to the right-hand edge of the
object in which it is embedded.

The Y-mode setting correspondingly applies to vertical position and height.

Whenever the X-mode or Y-mode value is changed (when in design view), the position
and size values are adjusted so that the object remains at the same place on the screen
(hence, you can lay out objects leaving X-mode and Y-mode set to the default Fixed
value, then change them as required later on.

Note: If you have a block which displays more than one row of data, then while it
makes sense to set a data controls X-mode (or Y-mode) to float, setting it to stretch
may make it look very strange if the block changes size.

Control name (name)
Objects can be given names, the main use of which is in scripts in order to identify
and access controls (for instance, a script can locate a control by name, then update
its value). Although Rekall does not enforce this, you should probably not give the
same name to two or more objects which are embedded in the same container (for
instance, two fields in the same block), since accessing a control by name from a
python script could refer to any of the objects. Using the same name for objects in
different containers would not be a problem.

75

Chapter 8. The Structure of Forms and Reports

The standard Rekall python library supports the feature whereby setting a KBButton
On Click even to #Click can be used to create simple record navigation buttons (First,
Previous, Next, etc) by using the KBButton name to specify the operation; similarly
#GoForm and #GoReport will invoke the form or report whose name is the KBButton
name.

Background Colour (bgcolor)
English spelling, folks! This setting specifies the background color to be used in ap-
plicable objects, such as KBButton and KBField. It also applies to blocks.

Frame Style (frame)
Some control - such as blocks, labels and pixmaps - can have a frame. There are three
components to the frame, a shadow effect (plain, sunken or raised), a shape (various
options such as panel and winpanel) and a width. The property dialogs for the objects
allow these to be controlled individually, and show an image of the general effect.

Text Colour (fgcolor)
This setting specifies the text color to be used in applicable objects, such as KBButton
and KBField.

In form labels and in the rich text control, text colour (as well as other properties) can
also be set if the text that is displayed is formatted using the QT Rich Text format. See
Troll Techs’s QT documentation for details.

Display Expression (expr)
This setting appears for objects that actually display data, such as KBField and KB-
Choice, and is the expression used to retrieve data from the server database. It must
therefore be a valid SQL expression (for the type of SQL server; Rekall does not pro-
vide server independance at this level).

This expression may be empty, in which case the control does not interact with the
server database. Values may be set and retrieved by scripts.

A special case is an expression of the form = expr where expr is a valid python expres-
sion, in which case the expression is evaluated when a value from a server database
would otherwise be displayed. For example, = time.strftime("%d-%b-%y", time.localtime
(time.time())) will show the current date (provided that the python time module is im-
ported).

Data-Related Properties
The next set of properties generally apply to data controls (such as KBField and KB-
Choice), though again not all apply in all cases.

76

Chapter 8. The Structure of Forms and Reports

Row Count (rowcount)
This is not actually a property of a data control, but rather of the block which con-
tains the data control, and specifies the number of rows of data which are displayed.
Hence, it gives the number of instances of the data control which will appear.

If the value is zero, then the block will calculate the number of rows according to
the block size and the block X- and Y-delta properties. As noted above, this check
also includes any containers that are embedded in the block; the minimum value is
chosen. If the value is still calculated as zero, then a single row will be displayed (so
you might get a scrambled display, but at least something will appear!).

X and Y Spacing (dx, dy)
These are also properties of the block which contains a data control. If the block has
the rowcount property set to zero, then these values are used for the spacing between
control, and hence affect the number of rows of data that are displayed in the block.

Where the rowcount is zero, and the block contains embedded containers, the same
spacing values are used in the containers.

Default Value (defval)
If a row of data is saved to the server database and a data control has not been set,
then the Default value will be used, if any. This is typically useful in a form to save
the user having repeatedly enter the a common value. Note that this is completely in-
dependant of any column default value that may be provided by the server database
itself.

Null OK (nullok)
This property should be set of it is OK for the data value to be empty when data is
saved to the server database. If the property is not set then the user must enter some
data.

This is also independant of any column not-null setting provided by the server database
itself. However, where Rekall detects that a column is marked not-null in the server
database it will check the control value whether this property is set or not.

Validator (evalid)
If this is not blank, then it is used as a regular expression against which user-entered
data is checked. The regular expressions are those supported by Troll Techs QT li-
brary 6. Note that as of this release, the expression is not anchored at either end.

Ignore Case (igncase)
Setting this property causes user-entered data validation to be case insensitive.

77

Chapter 8. The Structure of Forms and Reports

Read Only (rdonly)
If set then the user cannot alter the value, ie., it is for display only (although it can
still be changed by a script). If you do set this option, then you might want to do
something like change the text colour to give the user a hint.

Format (format)
The Format property is used to specify how the raw data from the server database is
formatted for display.

The properties dialog will display a set of options that allow you to construct a valid
format specification, although you can edit the format by hand. The format spec-
ification must match the type of data coming from the server database; again, the
properties dialog will select the appropriate type for you. If you do run a form and
the specified format is not applicable to the value (for instance, if a table column type
has been changed) then the control will display something like Format?Date.

The best way to specify advanced formating (for example, of dates and times, which
uses the strftime style of description) is to use the properties dialog to generate the
nearest and then to edit that.

Text Alignment (align)
This specifies text alignment in a simple text KBField. The default is left, the alterna-
tives are right and centered.

Input Mask (mask)
The Input Mask property gives some control over text entry. The mask is a text string
where the following characters are significant (note thay any other character stands
for itself):

A An upper-case character. Lower-case will
be converted

a A lower-case character. Upper-case will
be converted

0 A digit

_ Any single character

This area of Rekall is under development, so expect more mask functionality in future
releases. This may require incomaptible changes.

Block Properties
The next set of properties apply to blocks, although some only appear in form or
report blocks and not both. The rowcount and X/Y delta form block properties have
been described above under the data control properties.

78

Chapter 8. The Structure of Forms and Reports

Show Scroll Bar (showbar)
If this property is set then a block will show a vertical scroll bar at the right-hand
side, which can be used to scroll through rows that are displayed in the block.

Note that some user confusion may occur if the form is resized and this property
is set, since it is then possible to have a right-hand scrollbar which moves through
records, and a horizontal scrollbar which scrolls the form left-right in the window.

Parent/Child (master, child)
These two properties are used to link data in a nested block to the data in the block
which contains it. Parent is a column (or, in general, an expression) which will be
retrieved with the data for the outer block; Child is a column (or expression) which
applies to the nested block. The data which appears in the inner block comprises
rows which have the same value for Child as the value of Parent in the outer block.

For instance, if the outer block retrieves data from the table Clients, and the nested
block from Orders, with Parent and Child both set to ClientID, then the effect is much
as if you had used the SQL query:

select
from Clients, Orders
where Clients.ClientID = Orders.ClientID

Form Properties
The properties in this section apply to form documents. A form object is actually a
special case of a block, which has a number of additional properties which are global
to the form.

Streatchable (stretch)
Forms may be fixed size or stretchable. If they are fixed size then resizing the window
which displays a form below the size of the form itself (strictly, the size of the top-
level block) will result in scroll-bars appearing. If, however, the form is stretchable
then the size of the form will be adjusted to match the size of the window.

This setting can be used in conjunction with the X- and Y-mode control settings to
provide basic geometry management. For instance, if the number of rows in the top
level block is set to zero, then resizing the form and hence the block will alter the
number of rows displayed.

Scripting Language (language)
This setting controls the scripting language to be used within the form. Currently,
only py (for python) is supported.

79

Chapter 8. The Structure of Forms and Reports

Form Caption (caption)
This property gives the caption which appears in the title bar of the window which
shows the form. Note that you can control the caption which appears when the form
is started by embedding a parameter into the caption value, for instance Orders For
${date}; see the later description of parameters.

Script Modules
When a form is executed, any script modules listed under this property are loaded
into the script interpreter (in addition to the standard Rekall modules). These should
be script modules which appear under a Scripts tab in the database window.

Note that although this appears as a property, each specified module is stored in
the XML form definition as a separate node. For this reason, the property cannot be
manipulated from a script (not that this would make much sense anyway).

Scripting is described in much more detail later.

Import Modules
This property lists modules which should be implicitely imported into any script
code which is attached to an event (such as OnAction or PostSync) or expression (such
as the defval default valuen property).

This is needed since the way in which script code is specified for events and expres-
sions precludes module import. So, for instance, if an event uses a python function
such as time.strftime when you should include time in the import module list.

As for script modules, the each import module is actually specified via a separate
node in the form’s XML definition.

Report Properties
The properties in this section apply to report documents. A report object is actually a
special case of a block, which has a number of additional properties which are global
to the report. The Script Modules and Import Modules properties are the same as for a
form.

Margins (lmargin, rmargin, tmargin, bmargin)
The values, all expressed in millimeters, give the left, right, top and bottom margins
used when printing a report. When a report is created they are set to default values
(which can be changed via the View/Options menu selecting the Report tab), but can
then be changed independantly of the defaults.

Printer (printer)
This property is used to specify which logical printer is to be used to output the report.
See the end of the reports chapter for a description of exactly how this is used.

80

Chapter 8. The Structure of Forms and Reports

Show Print Dialog (printdlg)
Normally, if a logical printer is specified and is correctly defined, then the standard
print dialog is not displayed. Setting this property overrides this, and the print dialog
is always shown.

Notes
1. Actually, this depends on the image types which the QT library supports, but will

probably include bmp (Windows bitmap), gif , jpg/jpeg (Joint Photographic Group),
pbm (Portable bitmap), pgm, png (Portable Network bitmap), ppm, xbm (X bitmap)
and xpm.

2. Currently, there is no way to add headers and footers to a block which lacks them,
nor to remove them from a block where thay are not required (though you can
collapse them to say a single pixel height).

3. The use of the name KBObject is rather unfortunate, but its much too late to do
anything about it.

4. Only usually. A data control can be unbound, that it, have no expression asso-
ciated with it. In this case it is not involved in any interaction with the server
database. However, values can be set by scripts, and maybe retrieved by them,

5. A planned future feature of Rekall is user properties, whereby you can add arbi-
trary name/value pairs to an object. The main purpose of this would be to store
information for use by scripts.

6. Rekall uses QT3.x regular expressions, even in versions which are built on top of
QT2.x (that is, on KDE or Qtopia).

81

Chapter 8. The Structure of Forms and Reports

82

Chapter 9. Scripting with Python

Rekall uses Python as its scripting language, to allow you to provide functionality
over and above Rekall’s basic data display and update facilities. As well as giving
access to the both the data that is retrieved from the server database and control over
how it is displayed, you can have access to all the python libraries that are available.
This chapter describes how to use python scripting in Rekall and assumes at least a
basic knowledge of python.

Scripts can be located in three places. First, they can be embedded in form and report
objects, whence they are executed in response to various events. Secondly, they can
be embedded in form and report objects as parts of expressions. And thirdy, they are
stored in script modules which are in effect libraries available for import, much as
the standard Python libraries.

Since, in this release at least, scripts execution always starts with an event, the next
section deals with events.

Rekall uses a number of scripts itself, both to provide some common script functions
(for instance the code which allows record navigation buttons to be easily defined),
and to support internal functionality, such as table design and data display. These
can be seen in $PREFIX/share/apps/rekall/script/py/ .

Introduction to Scripting
The first section of this chapter gives a basic overview of scripting, in the sense of
what and where. Later sections go into more detail.

Events
The screenshot below shows the property dialog for the choice control in the Client
form of the RekallDemo database. The choice control has an entry corresponding to
each row displayed in a form, and can be used as a quick navigation tool 1 . The code
shown is associated with the On Change event, which occurs when the user changes
the selection.

The first thing to note is that the code defines a function called eventFunc. This is true
of all events, since this is the name that Rekall will use. If you don’t define eventFunc,
then the result is undefined; most likely some other event function will get executed,
but don’t rely on any apparent consistency!

83

Chapter 9. Scripting with Python

In the case of a choice control On Change event function, it is called with three ar-
guments; the control itself, the number of the row in the query whose data is being
displayed in the control, and the value now displayed by the control. The arguments
will vary with the type of control and the particular event, except that the control
itself is always the first argument to the event function. The control argument is actu-
ally an instance of a python class which corresponds to the control (and has the much
the same inheritance structure as was described in the previous chapter), although
you cannot actually instantiate such a class yourself. Also, you should not save a copy
of this anywhere, since it will cease to be valid when control exits from the event
function.

In the example here, the code retrieves the index of the selected value (item = ctrl.currentItem(row)),
and uses this to navigate to the corresponding query row (ctrl.getBlock().gotoQueryRow(item
- 1)). The additional test and the adjustment by one are there since choice controls al-
ways show a null value first.

Later in this chapter there is a full description of the methods which can be applied
to control, but in this case, ctrl.getBlock() gets the KBBlock in which the choice control
is embedded, and the gotoQueryRow(item - 1) does the navigation.

Some event functions (but not this one) should return a true or false result, where
a false result will cause further operations to be abandoned. For instance, there is a
KBBlock On Action event which is invoked just before an action such as Next Record is
performed; if an event function is defined and returns false, then the action does not
actually occur. If you are not sure whether or not you need to return a value, it does
no harm to return a true result.

As a general comment about events, there are two ways of defining an action in
python. The more general is to write a python function called eventFunc; this will be
invoked with arguments that are specific to the event, and provide information about
the object to which the event occured. The alternative is to write #Foobar, whence a
function named something like onBlockFoobar is invoked. This is elaborated on in the
scripting section.

Warning:When saving an event, Rekall checks to see if the first non-whitespace char-
acter is #, and if the # is followed by a letter (A-Z, either case). If so, it will trim any
leading whitespace, and also everything after the name (so, #Foobar rubbish becomes
#Foobar). Since python uses # as a comment character, you shouldn’t enter an event
function starting with a python comment unless the # is followed by whitespace, or it
will be zapped 2

Expressions
Data controls such as text fields have a Expression property which specifies the value
to be displayed. Normally this would be an SQL expression used to retrieve a value
from the server database. However, the expression may also be blank, in which case
no value is fetched and the control is only accessed from scripts; or, as a special case,
the expression may be of the form =expr where expr is a valid python expression.

In the latter case, whenever a server database derived value would otherwise be
displayed, the expression is evaluated and the result displayed. The main use for
this is to display information such as time and date, for instance =time.strftime("%d-
%b-%y", time.localtime (time.time())) . Note that this particular expression requires the
Python time module to be imported; see further on.

84

Chapter 9. Scripting with Python

Modules
The third place to store Python scripts is in modules. These are accessed under the
Scripts: py tag of the main database window. Just as for forms and reports, script
modules can either be stored in the file system or in a server database

In most respect, Rekall script modules are just the same as standard python modules,
and can be used once they have been imported. However, since the python import
mechanism does not know about Rekall and where it stores scripts 3 it is necessary to
explicitely instruct Rekall to import them. This is the purpose of the form and report
Script modules and Import modules properties.

The Script modules property lists those script modules which should be imported for
general use when the form or report executes. The effect is to preload the script mod-
ules into the python interpreter. For instance, suppose you have script modules mod-
uleA and moduleB, and that the latter needs to be needs to import the former. Just
writing import moduleA in moduleB will not work, since the python interpreter will
not be able to locate it; however adding moduleA to the Script module property will
preload it, whence moduleB can successfully import it.

The Import modules property fulfils a similar function with respect to event scripts
and expressions. Scripts listed here are available within event scripts and expressions
without the need for an python import statement; this is definitely neccessary with
expressions where it would not be possible to write a Python import statement. Also,
this list provides a means whereby standard python libraries can be loaded for use by
event scripts and expressions.

An Aside: Query Rows
In the rest of this chapter, repeated reference is made to query rows. What is meant by
this is the rows of data which a KBBlock retrieves from the server database; it may be
data retrieved directly from a table (select ... from tablename) or it may be retrieved via
a Rekall query.

Whenever there is a need to identify a particular row, it is always in terms of an index
into this data, irrespective of what rows are on display. Rekall will handle this; if you
try to access the value in a data control for a row which is not currently displayed,
Rekall will either ignore the operation or return a null value.

Examples
Before going though all the events, all the operations that can be performed on ob-
jects, and the other python functionality that Rekall provides, this section has what is
hopefully a representative set of examples of things that can be done with scripting.

Record Navigation the Proper Way
In earlier examples, the shorcut mechanism was used to create record navigation
buttons, where the On Click property was set to #Click. This calls some standard code
in the RekallMain.py modules. However, the same can be done directly, as shown in
the code below, which implements next record functionality:

def eventFunc (button) :
button.getBlock().doAction(3)

85

Chapter 9. Scripting with Python

When the event function is invoked, the first argument is the button. From this the
enclosing block is retrieved, and the code then invokes action 3, which is next record.
This could be a little better done as in the next piece of code, the only extra require-
ment being that the form Import Modules property included RekallMain@

def eventFunc (button) :
button.getBlock().doAction(RekallMain.actNext)

Doing things this way does not have any advantages over the shortcut, unless you
want to do something else at the same time. Suppose, for instance, that the form has
a checkbox (named confirm) which must be checked before the user can move on to a
different record. Then:

def eventFunc (button) :
block = button.getBlock()
check = block.getNamedCtrl("confirm")
if check.getValue(block.getQueryRow()) != "1" :

RekallMain.messageBox ("Please confirm first!")
return

block.doAction(RekallMain.actNext)

This code assumes that the button and the checkbox control are in the same block.
The code gets the block, then locates the checkbox control, and then checks the value.
There is currently no explicit isChecked method, but the checkbox control will return
values 0 or 1. Whether or not the checkbox control is associated with a column from
the table that the block retrieves data from (that is, whether it has an empty Expression
property or not), it is still necessary to specify the query row, which is also retrieved
from the block.

Now, there are two problems with this check in this code. Firstly, it would need to be
replicated for all navigation buttons, although we could partially get around this by
moving most of the code into a separate module, and just calling it from the event
function. The second problem is more important, however; this code would not pre-
vent the used clicking the toolbar next record button, or using a keyboard shortcut.
However, we can get round both problems at once by moving the check to the block
On Action event, which is invoked whenever an action (such as next record) is about
to take place. The button event code can revert to the version without the test, and
the block On Action code is then (where the ellipsis are replaced by the other relevant
actions):

def eventFunc (block, action) :
if action == RekallMain.actFirst or ... :

check = block.getNamedCtrl("confirm")
if check.getValue(block.getQueryRow()) != "1" :

RekallMain.messageBox ("Please confirm first!")
return 0

return 1

86

Chapter 9. Scripting with Python

If the On Action event returns false, then the action is aborted, so this code has the
desired affect. More importantly, it handles any navigation buttons you might add,
it works if the user uses the toolbar buttons, and it works if the user uses a keyboard
shortcut.

Locking Fields
This example shows how to lock fields against update depending on some criteria.
Suppose that we have a form which shows information about products (actually,
this could be the Products form from the Orders demonstration database), and that
we wish to stop the user from updating some fields for particular products. For the
example, we’ll use the product code to control this; the fields are locked if the product
code is equal to one.

The event function code below is attached to the block On Display event, which is
executed each time a row of data is displayed (and will be executed several times
in succession if the block displays more than one row). The block should contain a
control named Product which retrieves the product code from the server database;
this might well be a hidden field. Essentially, this code executes each time the set of
values in a row are displayed, and enables or disables the Quantity, DatePlaced and
DateDispatched fields.

def eventFunc (block, qrow) :
ordinary = block.getNamedCtrl("Product").getValue(qrow) != "1"
block.getNamedCtrl("Quantity").setEnabled (qrow, ordinary)
block.getNamedCtrl("DatePlaced").setEnabled (qrow, ordinary)
block.getNamedCtrl("DateDispatched").setEnabled (qrow, ordinary)

Much in the same way as the previous example, since the code is attached to a block
event, it works correctly however the user navigates through the data.

Roll Your Own Form
As has been remarked earlier, forms and reports definitons are stored in XML, which
you can view and, if you wish, edit yourself. Another feature which follows on from
this is the ability to write scripts which construct entire forms or reports that are
customised for specific situations; in this example the script is embedded inside the
On Click action of a button.

When executed below, the code prompts the used to select a field from the Client
table of the Orders demonstration database (this is the RekallMain.choiceBox (....) call. It
then constructs a form which shows a small form which displays then client company
name plus the selected field, along with a pair of navigation buttons. For added spice,
if the user selects Address then the form concatenates the address fields and displays
them (the code here assumes that the underlying server database is MySQL). The last
line of the script, button.getForm().openTextForm(form), opens the form that has been
created.

def eventFunc (button) :
name = RekallMain.choiceBox \

("A client field, please:",
["Telephone",

"Contact",

87

Chapter 9. Scripting with Python

"Department",
"Address",
"PostCode"

]
)

if name == None :
return

legend = name
if name == "Address" :

name = "CONCAT(address1, ’, ’, address2, ’, ’, " + \
"address3,’, ’,TownOrCity)"

form = ’<?xml version="1.0"?>’ + \
’<!DOCTYPE KBaseForm SYSTEM "kbaseform.dtd">’ + \

’<KBForm x="0" y="0" w="400" h="120" xmode="0" ymode="0"’ + \
’ name="UnnamedForm"’ + \
’ autosync="Yes"’ + \
’ rowcount="1" dx="0" dy="20" language="py"’ + \
’ caption="Client field: ’ + legend + ’" stretch="Yes">’ + \
’ <KBQryTable server="Self" table="Client" primary="ClientID"’ + \
’ order="Company"/>’ + \
’ <KBField x="20" y="20" w="370" h="20" name="Company"’ + \
’ expr="Company" taborder="1" align="1"/>’ + \
’ <KBField x="20" y="50" w="370" h="20" name="theField"’ + \
’ expr="’ + name + ’" taborder="1" align="1"/>’ + \
’ <KBButton x="20" y="80" w="70" h="30" name="Previous"’ + \
’ text="<" onclick="#Click"/>’ + \
’ <KBButton x="110" y="80" w="60" h="30" name="Next"’ + \
’ text=">" onclick="#Click"/>’ + \
’</KBForm>’

button.getForm().openTextForm(form)

This is clearly not a trivial thing to do, and requires a fairly detailed knowledge of
the XML that defines a form, but it illustrates one of the advanced things that Rekall
can do. If you do want to do this, one way is to design a form in the formal way in
order to get the basic layout, etc., correct, then use the XML for that form as the basis
of the script.

There is work in progress to develop a set of python classes which can be used to do
this more easily, for instance you would create a pythonform object, then add objects
such as fields and buttons. This is essentially the XML DOM model.

Object Events

Button Events

On Click

This event is triggered when the button is clicked. The single argument is the button.

def eventFunc (button) :
name = button.getName()
RekallMain.messageBox ("You’ve clicked the ’" + name + "’ button!")

88

Chapter 9. Scripting with Python

Item Events

On Set

This event is triggered when the value if the data control is set from the server
database. The arguments are the control, the query row for which the control dis-
plays data, and the new value.

def eventFunc (ctrl, qrow, value) :
if int(value) > 1000 :

RekallMain.messageBox ("That’s a very silly value!")
ctrl.setValue (qrow, "0")

On Change

This event is triggered when the value if the data control is changed by the user. The
arguments are the control, the query row for which the control displays data, and the
new value.

def eventFunc (ctrl, qrow, value) :
if int(value) > 0 :

RekallMain.messageBox ("Don’t set that checkbox!!")
ctrl.setValue (qrow, "0")

There are two special cases. Firstly, this event is not available on fields, and secondly,
on pixmaps, the value passed to the event function is undefined. If you need to pro-
cess values from field controls, the field On Leave event, and the block Pre-Insert and
Pre-Update events will probably suffice.

On Enter

This event is triggered when focus enters a control. The arguments are the control
itself and the current query row number.

def eventFunc (ctrl, qrow) :
if ctrl.getValue (qrow) == "" :

ctrl.setValue (qrow, "42.00")

89

Chapter 9. Scripting with Python

On Leave

This event is triggered when focus leaves a control. The arguments are the control
itself and the current query row number. If the function returns a false result then
focus remains in the control.

def eventFunc (ctrl, qrow) :
if (ctrl.getValue(qrow) == None) or (ctrl.getValue(qrow) == "") :

phone = RekallMain.promptBox \
("Telephone",

"",
"Really no phone?")

if phone != "" :
ctrl.setValue (qrow, phone)

return 1

Block Events

On Action

This event is called immediately before an action such as Next Record is called, the
two arguments being the block and the action. If the event function returns false then
the action is aborted. Action codes are defined in the RekallMain module; note that
these values are also used as arguments to the block doAction method. The complete
set is listed below.

Code Value Meaning

actNull 0 No action

actFirst 1 Go to first record

actPrevious 2 Go to previous record

actNext 3 Go to next record

actLast 4 Go to last record

actAdd 5 Add a new record

actSave 6 Save record

actDelete 7 Delete record

actQuery 8 Start a query (search)

actExecute 9 Execute a query (search)

actCancel 10 Cancel query

actInsert 11 Insert a new record

actReset 14 Reset changes to row

actGotoQRow 15 Go to row by query number

actSyncAll 16 Save all updated rows

90

Chapter 9. Scripting with Python

On UnCurrent

The On UnCurrent event is invoked when focus leaves a row in a block (ie., the focus
moves to a control in a different row or in a different block); the arguments are the
block and the query row number of the row being left.

Note that this event is not invoked when a row is deleted.

On Current

The On Current event is invoked when focus arrives in a row in the block (ie., the
focus moves to a control in a different new row or block); the arguments are the
block and the query row number of the row being entered.

The example below is taken from the Client form in the RekallDemo database. This has
a combobox which can be used to navigate between records; the code here updates
the combobox whenever the current record changes.

def eventFunc (block, qrow) :
Orders.onBlockCurrent (block, qrow)
selector = block.getNamedCtrl ("selector")
if qrow >= block.getNumRows() :

selector.setCurrentItem (qrow, 0)
else : selector.setCurrentItem (qrow, qrow + 1)

On Display

The event is invoked whan a row is displayed, and is called with the block and the
query row number as arguments. An example of using this event was shown earlier.

Pre Insert

This event is invoked immediately before a row which has been inserted into a form
is actually committed to the server database; the arguments are the block and the
query row number of the row. If the event function returns false then the insert is
aborted (but the row remains inserted in the form).

def eventFunc (block, qrow) :
Orders.ordersPreCommit (block, qrow, RekallMain.actInsert)
return 1

Note that the Pre Insert event is different to the On Action event when called with the
actInsert action. The latter is when the user opens up a new row (by right-clicking in a
rowmark and selecting Insert); at this stage Rekall simply makes space for a new row
of data to be entered.

91

Chapter 9. Scripting with Python

Pre Update

This event is invoked immediately before a row which has been changed in a form is
actually committed to the server database; the arguments are the block and the query
row number of the row. If the event function returns false then the update is aborted
(but the row remains changed in the form).

def eventFunc (block, qrow) :
Orders.ordersPreCommit (block, qrow, RekallMain.actSave)
return 1

Pre Delete

This event is invoked immediately before a row which has been marked as deleted in
a form is actually deleted from the server database; the arguments are the block and
the query row number of the row. If the event function returns false then the update
is aborted (but the row remains marked as deleted in the form).

Note that if the block autosync option is set, then a row will be deleted immediately
after it is marked for deletion.

def eventFunc (block, qrow) :
if not RekallMain.queryBox ("Are you sure?") :

return 0
Orders.ordersPreCommit (block, qrow, RekallMain.actDelete)
return 1

Post Query

The Post Query event is triggered immediately after an SQL select query has been
executed but before the data is displayed. The single argument is the block; any value
returned is ignored.

The example below updates a combobox control to have on entry for each record
retrieved from the server database See the Client form in the RekallDemo database.

def eventFunc (block) :
selector = block.getNamedCtrl("selector")
list = []
for rowno in (range(block.getNumRows())) :

list.append (block.getRowValue("Company", rowno))
selector.setValues (list)

92

Chapter 9. Scripting with Python

Post Sync

This event is invoked immediately after the data displayed in a form has been syn-
chronized with the server database (ie., after an SQL insert, update, or delete). The
arguments are the block, the current query row number, the synchronisation opera-
tion just performed, and the primary key value for the row which was operated on.
Values for the operation are defined in the RekallMain module, and are listed above
under the On Action event.

The example below is just the same as the Port Query example above, and keeps the
combobox up to date when records are added, deleted or altered.

def eventFunc (block, qrow, act, value) :
selector = block.getNamedCtrl("selector")
list = []
for rowno in (range(block.getNumRows())) :

list.append (block.getRowValue("Company", rowno))
selector.setValues (list)

Form Events

On Load

This event is executed when a form is loaded for execution. At the point of execution,
the form is ready for display, but no server database queries have been issued. The
single argument is the form,

def eventFunc (form) :
RekallMain.messageBox ("Hello and Welcome") ;

On UnLoad

This event is executed immediately before a form closes. The single argument is the
form.

def eventFunc (form) :
RekallMain.messageBox ("Toodle-pip, old chap!") ;

93

Chapter 9. Scripting with Python

Manipulating Objects
The chapter so far has described where scripts are stored, and when scripts are ex-
ecuted. We now move on to describing how scripts can manipulate objects in forms
and reports.

In line with the object orientation of Python as a language, all Rekall objects - KBForm,
KBBlock, etc. - are represented as Python objects. Hence, when an event function is
invoked with is associated object as the first argument to the event function, that first
argument is a Python object which represents the Rekall object. And, just as Python
provides object inheritance, the Python objects which represent Rekall objects have an
exactly corresponding inheritance. Hence, since a KBField object is a special case of a
KBItem, so the KBField Python object inherits all the methods applicable to the KBItem
Python object.

The remainder of this section should be read with the Rekall object structure described
earler. Each of the following sections lists the methods applicable to each Rekall object.

KBObject Methods
The following methods apply to KBObjects. Note that some methods, for instance the
enable and visibility methods, are redefined for KBItems since an KBItem may display
multiple controls.

setEnabled(bool)

This method enables or disables the object, in the normal sense in which buttons and
such are enabled or disabled.

The code below, which is a KBBlock onCurrent event, disables a button for the first
record.

def eventFunc (block, qrow) :
prevButton = block.getNamedCtrl("PrevButton")
prevButton.setEnabled (qrow > 0)

isEnabled()

This method returns true if the control is enabled.

setVisible(bool)

This method shows or hides the object, in the normal sense in which buttons and
such are shown or hidden.

def eventFunc (block, qrow) :
prevButton = block.getNamedCtrl("PrevButton")
prevButton.setVisible (qrow > 0)

94

Chapter 9. Scripting with Python

isVisible()

This method returns true if the object is visible.

getName()

This method returns the name of the object, as set in the object’s properties.

getAttr(attrName)

This method returns the value of a named property (attribute) of the object. The name
is a name as specified in the previous chapter (eg., the X-position property is named
x). getName() is actually equivalent to getAttr("name").

width()

Returns the object’s width in pixels.

height()

Returns the object’s height in pixels.

resize(width, height)

This method resizes the object to width x height pixels. Note that if the object is a
KBItem then all the controls displayed by the KBItem will be resized.

getBlock()

Returns the KBBlock in which the object is embedded. Note that if the embedding
block is actually a KBForm or KBReport then the result is a KBForm or KBReport re-
spectively.

getNamedCtrl(name, errorOK)

This method is the key to locating controls; given the name of a control it locates
the control relative to the object on which it is invoked. The most common usage is
to locate a control inside a block; the example below could be used on a block On
Display event to clear a field.

def eventFunc (block, qrow) :
ctrl = block.getNamedCtrl ("Password")
control.setValue (qrow, "")

However, the name argument to getNamedCtrl can be an arbitrary path, with the /
character as separator, in which case the object tree is traversed. For instance, get-
NamedCtrl("block1/control12") would locate an object named block1 inside the object

95

Chapter 9. Scripting with Python

to which the method is applied, and then locate control12 within that object. When
used this way, each step other than the last should return a block or container object.

In addition, you can use .. to move up the object tree. For instance, the following
event code could be associated with a button On Click event, in which case it will
disable the button named another in the same block (or container) as this button:

def eventFunc (button) :
button.getNamedCtrl("../another").setEnabled(0)

If the name starts with the / character then rather than starting at the object to which
the method is applied, the location operation will start with the topmost object, that
is, the form or block. But, beware, if you use a name like block2//control34 then the //
will go to the topmost object; although the use of .. and a leading / is analagous to file
system names, the // usage differs.

To make debugging easier, if the second argument is false (this argument is optional
and defaults to false), and the location operation fails at some point, then a dialog
is shown. This shows a tree of all objects in the form or report, along with the name
argument. The object tree is expanded as far as the object on which the getNamedCtrl
method was invoked. You can then either fail the operation (the method returns with
the result None or select an object and continue with that object being returned.

The screenshot below shows the dialog, and the following code (which can be at-
tached to a button On Click event) will display the name of the selected object.

def eventFunc (button) :
ctrl = button.getNamedCtrl ("../noWhere/noCtrl")
if ctrl != None :

RekallMain.messageBox (ctrl.getName())

getForm()

Returns the KBForm in which the object is embedded, or None if the object is actu-
ally in a KBReport. Note that this is distinct from getBlock() which will only return a
KBForm if the object is embedded in the top-most KBBlock of a form.

96

Chapter 9. Scripting with Python

lastError()

This method returns a string describing the last error which occured on the object. It
can be used after specific methods (such as the KBForm executeCopier method) which
set an error message.

KBItem Methods
The following methods apply to KBItems. Note that the row argument identifies a
query row number, that is it is a row index into the data which is displayed in the
block in which the KBItem is embedded.

setValue(row,value)

This method sets the data control which currently displays the row query row to
the specified value. For instance, if a block is displaying 5 rows of data, which are
the 11th through 15th rows of the query, then setValue(12,"Hello") will set the second
displayed row.

If the specified row is not currently displayed, then nothing is updated.

Please note that in this release of Rekall, the value must be a string.

def eventFunc (block, qrow) :
qty = block.getNamedCtrl("Quantity").getValue(qrow) ;
cost = block.getNamedCtrl("Cost").getValue(qrow) ;
block.getNamedCtrl("Amount").setValue(qrow, ‘int(qty) * int(cost)‘)

getValue(row)

This method retrieves the value currently displayed in the control corresponding to
the row query row. For instance, if a block is displaying 5 rows of data, which are
the 11th through 15th rows of the query, then getValue(12) will get the value from the
second displayed row.

If the specified row is not currently displayed, then the result null.

setEnabled(row,bool)

This method enables or disables the control corresponding to the row query row, in
the normal sense in which text fields and such are enabled or disabled.

The code below, which is a KBBlock onDisplay event, disables a salary field if it con-
tains the boss’s salary, so that the wages department cannot change it. Ha! typical.

def eventFunc (block, qrow) :
minion = block.getNamedCtrl("Name").getValue(qrow) != "TheBoss"
block.getNamedCtrl("Salary").setEnabled (qrow, minion)
if not minion :

RekallMain.messageBox ("The Boss’s salary is fixed!")

97

Chapter 9. Scripting with Python

isEnabled(row)

This method returns true if the control corresponding to the row query row is enabled.

setVisible(row,bool)

This method shows or hides the control corresponding to the row query row, in the
normal sense in which buttons and such are shown or hidden.

isVisible(row)

This method returns true if the control corresponding to the row query row is visible.

Containers Methods
The following methods apply to KBBlocks and KBContainers. Note that when used on
a KBContainer, the method in effect operates on the KBBlock in which the KBContainer
is embedded. As for KBItems, the row argument identifies a query row number.

getNumRows()

This method returns the number of rows or data which the block as retrieved from
the server database. For instance, if the block gets data directly from a table, and there
were no SQL where conditions, then the value will be equal to the number of rows in
the table.

The following example, an event function for the KBBlock postSync event, totals up
and displays stock quantity.

def eventFunc (block) :
total = 0
for row in range (0, block.getNumRows()) :

value = block.getRowValue("Stock", row)
if value != None : total = total + int(value)

RekallMain.messageBox \
(’There are " + ‘total‘ + " items in total",

Total Quantity of All Products"
)

getQueryRow()

This method returns the current query row number.

gotoQueryRow(row)

Focus is moved to a control which is displaying data from the specified query row. If
necessary, the block will scroll through its data to bring such a row into view.

98

Chapter 9. Scripting with Python

getRowValue(name, row)

Name should be the name of a data control which is embedded in the block. Provided
that such a control exists, then the result is the data value from the row query row
corresponding to the control.

Note that this is not neccessarily the value displayed. Either the specified row may
not be displayed at all (ie., it is outside the range of rows currently displayed by the
block), or the user may have edited the value displayed but not yet saved it. If it is
neccessary to ensure that the displayed value is kept correct then the script must also
update the control.

See the example above under the getNumRows() method.

KBButton Methods

setText(text)

This method sets the button text. For example, to change the button text when a
button is clicked, using the onClick button event:

def eventFunc (button) :
button.setText ("Button Clicked")

KBLabel Methods

setText(text)

This method sets the label text.

Tabber and Tabber Page Methods
The following two methods apply to tabber pages, although they can also affect the
tabber in which the page exists.

setEnabled(bool)

This method can be used to enable or disable a page. If the page is disabled then all
control inside the page are also disabled. The tab which is associated with the page
is also enabled or disabled.

99

Chapter 9. Scripting with Python

setCurrent()

This method makes the page to which it is applied, that is, it is made visible (and
hides all other pages), and the associated tab becomes the current tab. This is equiv-
alent to the user clicking the tab.

Note that this method acts independantly of the setEnabled method, so a page can be
made current even if it is not enabled.

KBForm Methods

openForm(name, params)

This method can be used to open a named form. The first argument is the name of
a form; the second (which is optional) should be a dictionary of (name, value) pairs,
which are passed as parameters to the form. See the chapter on executing forms and
reports with paramaters for more details.

The example below is attached to the Clients button of MainForm in the RekallDemo
database. It prompts the user for a filter to select clients to display. See chapter 6 for
more details.

def eventFunc (button) :
text = RekallMain.promptBox \
("Enter pattern or leave empty for all",

"",
"Select companies"

)
if text == None : return
if text != "" : text = "Company like ’" + text + "’"
button.getForm().openForm
(’Client’,

{’Filter’ : text}
)

openReport(name, params)

This method can be used to open a named report. The first argument is the name of a
report; the second (which is optional) should be a dictionary of (name, value) pairs,
which are passed as parameters to the report. See the chapter on executing forms and
reports with paramaters for more details.

executeCopier(name)

This method can be used to execute a named copied, the name of which is passed as
the argument. The return value is the number of rows copied, or negative on an error
(in which case the lastError method can be used to get an error message).

def eventFunc (button) :
form = button.getForm()
rows = form.executeCopier(’ClientsAsXML’)
if rows < 0 :

100

Chapter 9. Scripting with Python

RekallMain.messageBox (form.lastError())
else : RekallMain.messageBox (’Exported ’ + ‘rows‘ + ’ client records to "/tmp/clients.xml"’)

openTextForm(text, params)

This method opens a form whose XML definition is passed as the first argument.

See the example earlier in this chapter.

openTextReport(text, params)

This method opens a report whose XML definition is passed as the first argument.

Python Scripting Help
Rekall provides automatic prompting when you are editing a python script. For in-
stance, if you enter something like:

button.setEnabled (true)

Immediately after entering the opening parenthesis, Rekall will show summary in-
formation for possible setEnabled method; in this case there are two, for an KBObject
(such as a button) and an KBItem (such as a text field). Because python is a dynami-
cally typed language, Rekall cannot make any assumptions about what sort of object
button in the above example is 4 and hence shows both methods

The help information remains visible until you either type a closing parenthesis, or
move to another line in the script. It can also be dismissed using the escape key.

An additional way of getting help is to enter ctrl-H. In this case Rekall looks for a
method name immediately in front of the current cursor position, and shows all
methods which start with the string so found. For instance. with the cursor posi-
tioned immediately after button.set in the above example, Rekall will show all meth-
ods which start with set (setEnabled, setValue, and so forth).

Notes
1. Actually, this would be pretty stupid if there were lots of records, but if there are

only a few, its quite good. Anyway, this is just an example, not a statement of
good database design.

2. At some stage, the # character may be changed, for instance to !, to avoid this
problem. In truth, # was a bad choice in the first place. I admit it.

3. Actually, python import can be extended, so some thought may be given to direct
import from Rekall in a later release.

4. You may call the object variable button, but that is entirely up to you; it has no
special meaning to python.

101

Chapter 9. Scripting with Python

102

Chapter 10. The Python Debugger

Rekall has a built in Python debugger. This is still under development, but currently it
does the standard sort of debugger things, like trapping errors, handling breakpoints,
and displaying variables. The debugger window is brought up using the Show Debug-
ger button on the main database window toolbar (the one with the bug on it!)

The screenshot below shows the debugger in action. The left-hand side contains a
tabbed area, with tabs which display (from top to bottom) a view onto all python
objects (which starts with the module dictionary); a view of all python functions
(grouped up by module); current break and watchpoints; and a backtrace. The right-
hand side shows the code of a module; the green marker shows the point at which a
breakpoint or error occured, while the read markers denote breakpoints. In this case,
the code has an error; block has been mistyped as blocK so the Python interpeter has
been unable to locate a getNumRows() method.

Usually, the debugger is just a normal window, just like a form or copier window,
which the exception that the debugger is always a separate top-level window, whether
Rekall is running in SDI mode or MDI mode. However, if a python exception is raised
or a breakpoint is hit, the window becomes modal. Effectively, this freezes Rekall at
that point until python execution is continued. While you can edit and compile code
at this point, you cannot continue execution with the modified code 1

Also, you cannot directly load code into the debugger edit window. Code automati-

103

Chapter 10. The Python Debugger

cally appears if an exception occurs and Rekall can determin its location. Otherwise,
once the debugger window is on view, go to the list of scripts in the main database
window, and right-click on a script; the popup menu will now include an entry to
load the script into the debugger. Alternatively, once a script module has been loaded
into the Python interpreter, locate something (such as a function) which is in that
module in one of the left-hand windows, and right-click; the popup menu will have
an option to dusplay the code.

Tool Icon Use

Set exception skip list

Abort execution (raises an exception)

Single step execution

Continue execution

Toggle breakpoint at current line

Enable/disable exception trapping

Breakpoints
Breakpoints can be set and cleared by clicking in the required line, and then click-
ing the breakpoint tool. Alternatively, use any of the left-hand windows to find a
function, and right-click; the popup menu will contain options to set a breakpoint
(execution freezes when a breakpoint is hit) or set a watchpoint (watchpoints simply
count the number of times thay have been hit).

Once a breakpoint is encountered, you can continue execution (execution continues
until either another breakpoint is encountered, an exception is trapped, or control
exits from the python script, or you can single step, in which case execution continues
to until control arrives on a new line. Strictly, new line means when the python inter-
preter reports that control as reached a new line. In the case of a statement like while
i < 10 : i = i + j, the same line will be repeatedly executed while i is less than ten, so a
breakpoint on this line may be trapped several times in succession.

You can also abort execution after a breakpoint. Actually, this raises a python excep-
tion, so if the python script catches the exception, execution will continue from that
point.

Exceptions
The debugger has two exception related controls. Firstly, you can enable or disable
exception trapping. Some python modules generate a large number of exceptions in
the normal course of execution (the 4Suite XML library is a case in point), which
means that debugging any code which makes use of such libraries can be near-
impossible if exceptions are enabled.

104

Chapter 10. The Python Debugger

On the other hand, it may well be the case that exceptions which occur in a Rekall
python script really do represent errors. The screenshot above showed an example of
this. The name bblock is a mistyping of block, and when the code is executed python
raises an error because no variable called bblock exists. If this exception is not caught,
then Rekall will detect the error (since control exits from an event function due to the
exception) but is limited in what information it can report. Also, you would probably
like the debugger to halt execution at the offending line.

The exception skip list provides a means to handle this situation. The skip list con-
sists of a list of exception name prefixs; if an exception occurs but one of the en-
tries in the skip list is a prefix of the exception name (hence xml.dom. is a prefix of
xml.dom.scopeError, but not of xml.sax.scopeError) then the debugger does not trap the
exception, and python processes the exception as normal.

The exception skip list dialog is shown below. The second entry, xml.dom. is actually
superfluous, since xml. will includes all these. The re. prefix skips exceptions from the
re package.

Notes
1. Unlike, for instance Access Basic. This is just not possible with python; python is a

much more powerful language than Access Basic, but nothing comes for free.

105

Chapter 10. The Python Debugger

106

Chapter 11. Executing SQL from Python Scripts

Although Rekall automatically access the server database when it gets data for a form
or report, or when the user makes changes to data in a form, Rekall also allows direct
access to the server database. It does this by providing a python class RekallPYDBI
which is a (partial) implementation of the python DBI2 specification.

Essentially, RekallPYDBI allows you to write and execute SQL queries that interact
directly with the server database 1 . Currently, just the select, insert, update and delete
SQL commands are supported (so you cannot, for instance, create or drop a table).

Connecting to the server database
The first stage in using RekallPYDBI is to connect to the server database. This is shown
in the example below, and uses the connect function. The first argument can be any
object in the form or report. For instance, if the code is in the onClick event function
of a button then use the button as the argument 2 . The second argument is the server
name used to identify the server database.

import RekallPYDBI
connection = RekallPYDBI.connect (object, server)

You now have a connection to the same server database. The next step is to create a
cursor, which is can object which can execute SQL queries.

import RekallPYDBI
connection = RekallPYDBI.connect (object, server)
cursor = connection.cursor ()

Using a cursor
The most common use of a cursor is probably to execute an SQL select command. The
example below (which can be attached to the onLoad event of a form), displays the
number of products in the Products table.

def eventFunc (form) :
connect = RekallPYDBI.connect (form, "Orders")
cursor = connect.cursor ()
cursor.execute ("select count(*) from Products", [])
RekallMain.messageBox("You have " + cursor.fetchone()[0] + " products")

The cursor.execute(....) line executes the SQL count query. The second argument is a
list of values which will be substituted into the query (in this case, there aren’t any);
see the next example below.

The extended example below is taken from the RekallDemo database. The orders form
has some scripting which records changes to the Orders table in another table called
Audit. Basically, the preInsert, preUpdate and preDelete block events record infomation

107

Chapter 11. Executing SQL from Python Scripts

about what is about to happen in some python global variables. The postSync event
then invokes the code shown below, which inserts a record into Audit.

The main thing to note is the use of ? as a placeholder in the SQL query; when the
queery is executed, the values in the list argument to cursor.execute(...) are substituted.
This example also shows the use of python exceptions.

def onBlockOrdersPostSync (block, qRow, action, key) :

global auditActionText
global auditClientID
global auditProductID

if auditActionText == None : return

entered = time.strftime("%Y-%m-%d %T", time.localtime (time.time()))

try :
connect = RekallPYDBI.connect (block, "Orders")
cursor = connect.cursor ()

cursor.execute \
("insert into Audit (OrderID, ClientID, ProductID, " + \

" Action, Entered) values (?, ?, ?, ?, ?)",
[key,

auditClientID,
auditProductID,
auditActionText,
entered

]
)

except RekallPYDBI.DatabaseError, message :
RekallMain.messageBox (message.args[0])

auditActionText = None

The RekallPYDBI Code
The code used to implement RekallPYDBI can be found in /opt/kde3/share/apps/rekall/script/py/RekallPYDBI.py.
At present, this is a partial implementation of the python DBI2 specification, but will
be filled out in a future release.

Please note RekallPYDBI uses a lower level interface to Rekall itself (methods such
as qrySelect and getNumFields). These may change in future releases of Rekall, so you
should not use them yourself.

Notes
1. You can, of course, import and other python DBI module and use that to access a

server database, however you will need to code in details such as the username
and password for the server database.

2. The first argument is needed in case you have opened multiple database in the
same instance of Rekall.

108

Chapter 12. Import and Export: The Copier

This chapter describes Rekall’s import and export functionality. However, Rekall ex-
tends this to a more general copy mechanism; read on!

The Copier
Database front ends generally provide a means to import data and to export data.
Import basically takes data from a file and loads it into a table; export basically takes
data from a table and writes it out to a file. So, import can be thought of as copying
from a file to a table, and export as copying from a table to a file; the important op-
eration here is copy. It is the copying operation that Rekall extends to provide import
and export.

A copy operation has two main components, namely a source and a destination. Rekall
provides three sources and three destinations. Logically, the sources take an input,
split it into rows, and splits each row into fields. They are:

• A file (either fixed width or delimited fields)

• A table

• An arbitrary SQL select statement

Similarly, destinations logically take rows of fields, and combine them row-by-row to
generate output. They are:

• A file (either fixed width or delimited fields)

• A table

• An XML format file

A copier is then a specified source and a specified destination, and data is simply
copied from one to the other, effectively row by row. There are a few extra consider-
ations, such as what to do if the source produces more or less items than the destina-
tion expects, but this is the basic operation.

The screenshots below show the copies; the first copies a file to a table (a classic
import), the second copies a table to a file (a classic export) and the third copies from
an SQL select query to an XML formatted file. In each casem the source is the left-
hand side, and the destination the right-hand.

109

Chapter 12. Import and Export: The Copier

110

Chapter 12. Import and Export: The Copier

Copier Sources

File
A source file may be contain either fixed width or delimited; which to use is selected
from the combobox at the top.

A delimited file has a delimiter, and optionally a qualifier; the delimiter separates
input fields, the qualified surrounds fields. Hence, a line like one|two|three has the
| character as delimiter bit no qualifier; "one"|"two"|"three" has the same delimiter
but also " as the qualifier.

In a fixed with file, fields occupy sepecied columns (eg., field1 occupies columns
0 through 12, field2 occupies 13 through 20 and so on). Fields are specified in the
appropriate area of the dialog; each can be given a name, which is just used as a
comment. Fields do not have to occupy contiguous ranges of columns, and need not
include all the columns in the file (indeed, fields may overlap, though you will be
warned about his). The Set from table button can be used to choose a server database
and table on which to base the set of fields.

The other setting (at the bottom, next to the file) controls error behaviour. Ignore excess
means that extraneous fields are ignored (this only applies to delimited files); Skip
means that any line with too few or too many fields is skipped; and Abort causes the
copy to be aborted if there are too many or too few fields.

Table
A table source specifies a server database, a table in that server database and one or
more fields from the table; additionally, arbitrary SQL expressions can be added.

111

Chapter 12. Import and Export: The Copier

Optionally, SQL where and order by expressions can be specified, to select only certain
rows, and to order the rows.

Arbitrary SQL
The allows an arbitrary SQL select query to be given; the only other setting being the
server database.

Copier Destinations

File
The settings for a file destination are pretty well the same as for a file as source. The
only difference is the error options, where Ignore excess is replaced by Pad with nulls,
whereby if the source does not provide enough values, then nulls (empty strings) are
used.

Table
A table as a destination has similar settings as a table as source. However, there are a
set of options that control how rows are imported:

• Append: Rows are simply appended to the table.

• Replace: All existing records in the table are deleted before any new rows are added.

• Update: Existing rows are updated where the value of a particular column (which
is set in the dialog) matches the import row. If there is no match then the import
row is ignored. 1

• Replace/Insert: This is the same as Replace, except that if no rows are updated then
the import row is appended to the table.

XML
XML destination writes ouput to a file, but in XML format.

The root document element is named according to the Main document tag setting; each
row is then a child element of the root element, and is named as the Row element tag
settings.

Values are ouput either as attributes of the row elements, or as text in vakue elements
which are children on the row elements. The attribute name or value element names
respectively are set in the Fields area of the dialog, along with the choice of attribute
or element.

The Set from table button can be used to choose a server database and table on which
to base the set of fields.

112

Chapter 12. Import and Export: The Copier

Notes
1. Rekall simply generates an SQL update statement and executes for the values in

the import row. Hence, the question of whether zero, one or more rows in the
table are changed is just a function of the server database

113

Chapter 12. Import and Export: The Copier

114

Chapter 13. Executing Forms and Report with Parameters

It is sometimes neccessary to run a form or a report with one or more parameters. For
instance, it may be useful to be able to run a report which only output information
between a pair of dates.

Rekall’s mechanism for this is parameters. Parameters may be embedded inside object
attributes (for instance, inside the where attribute associated with a table or query),
and the user can be prompted for values when the form or report is run.

Values for parameters can also be supplied when a form or report is run. This does
not occur when the user directly runs a form or report (by double-clicking in forms
tab of the database dialog), but can be used when a form or report is started by a
script.

Using Parameters
A parameter can be inserted into any text attribute. For example, the following is an
where expression which accept records whose field EntryDate is between two dates:

(EntryDate >= ${from_date}) and (EntryDate < ${to_date})

The text ${from_date} will be replaced by whatever the value of from_date is. The value
is supplied either by the user via a parameter dialog, or via a script. Additionally, the
form ${name:defval} may be used; in this case, if name is not otherwise defined, then
defval will be used. This is useful in where expressions like:

Company like ’${Company:%}’

In this case, a pattern can be supplied which filters by company name; if no pattern
is supplied then % matches all companies.

An example in the dialog below, which is accessed by going to Block Properties and
clicking the Query button.

115

Chapter 13. Executing Forms and Report with Parameters

Setting up for User Entry
The parameter dialog mechanism provides a way to prompt the user for parameter
values, and to supply default values.

First, it is neccessary to set up a set of parameter prompts. There should be one for
each parameter that is used in the form or report, each containing the parameter
name (as in ${name}), the default value, and some prompt text. To set these up, open
the document in design view, and go to the document properties dialog; here, locate
and double-click the paramaters item.

This will show the properties dialog in the form shown below; the screenshot shows
one parameter from_date already set up, and the other to_date being edited. Also
shown here is the use scripting to provide a default range of dates from the first
of the current month to the first of the next month 1 ; the usage is just the same as
for using an expression as the value of a field in a report or a form. Note that for this
example to work, the report must import the python time module.

User Input
Finally, when the form or report is executed, a parameter dialog will appear into
which the user can enter values: 2

Passing Parameters via Scripts
The KBForm openForm and openReport methods take an optional argument which is a
dictionary of parameter (name, value) pairs, for instance 3

def eventFunc (button) :

116

Chapter 13. Executing Forms and Report with Parameters

button.getBlock().getForm().openReport \
("Clients",

{ Company : "Big%" }
)

If the Clients report has not defined any user entry paramaters, then it will execute
immediately. Assuming that you have done something sensible with the Company
parameter such as having a where expression like Company like ’${Company:%}’, then
the report should just show big companies.

This mechanism can be taken to extremes. For instance, you could have a where ex-
pression which is just ${Filter}, and then pass the Filter parameter as Company like
’Big%’. This way, you can construct completely arbitrary filters in a script. Below is
an example from the RekallDemo database:

This is comment and not a shortcut, since the leading # is followed
by whitespace. OK, agreed, its a hack!
#
def eventFunc (button) :

text = RekallMain.promptBox \
("Enter pattern or leave empty for all",

"",
"Select companies"

)
if text == None : return
if text != "" : text = "Company like ’" + text + "’"
button.getBlock().getForm().openForm (’Client’, {’Filter’ : text})

For reference, here is the KBForm onLoad event for the Client form. This displays a
subtlety of inline events. Because the text is just a property like any other property
(width, font, etc.), they are subject to parameter substitution, so the script here dis-
plays a welcome message, which also shows the filter, if there is one.

def eventFunc (form) :
message = "Welcome to the Clients Form!"
if "${Filter}" != "" :

message = message + "\nFilter: " + "${Filter}"
RekallMain.messageBox(message)

Opening Forms and Reports
By default, the openForm method will open a form in data view, and openReport will
open a report such that it is printed. These are most likely what is usually wanted,
however Rekall does have a mechanism to open forms and reports differently to this,
for example to open a report in data view.

This is accomplished by passing a value for a parameter __showAs (thats two under-
score characters). The list of possible values is given below, note that not all cases
apply to both forms and reports.

117

Chapter 13. Executing Forms and Report with Parameters

ShowAsData From or report is opened in data view. This is the default
for forms.

ShowAsDesign From or report is opened in design view

ShowAsReport Opens a report for printing. This is the default for reports.

By the way, these also work for openTextForm and openTextReport, though its doubtful
that it is much use in these cases.

Parameter Passing: An End-Note
Parameter substitution takes place on all properties of all objects that a form or report
is constructed from. In principal, there is no reason why something like a form width
cannot be parameterised.

However, at present it is effectively impossible to parameterise any property that is
actually used in design mode (such as form width). If you really do want to play
this trick, you should be able to do so, but you will need to hand-edit the XML form
or report definition (and it will be lost if you make further changes via the form or
report designer).

To be honest, we have not actually tried this, but it ought to work :)

Notes
1. Actually, the code isn’t quite right. It gets the first of the next month by adding

31 days (in seconds) to the current time, which might of course be the month after
next. Completely correct code is left as an exercise for the reader.

2. There is currently a bug in Rekall; if you switch back and forth between design
view and data view, then although the user entry parameter dialog will appear,
the values may not be used. If in doubt, close the form or report, and then open it
in data view.

3. Hopefully, in a future release, it will be possible to support python argument pass-
ing like openReport("Clients", Company = "Big%").

118

Appendix A. Primary and Unique Key Columns

This appendix describes the issues involved in primary and unique key columns in
tables, and how this relates to tables created by Rekall, compared to tables which
already exists when Rekall is used to access an extant database. covers are:

Identifying Rows in Tables
When Rekall displays table data in a form (or when displaying table data directly,
which is effectivelyu a form), then in order to update the table, Rekall must be able
to uniquely identify each row in the table. This is because Rekall must issue an SQL
query of the form update tablename set where colname = uniquekey where colname is
the name of a column whose contents are unique (ie., is different in every row of the
table) and uniquekey is the unique key value for the row to be updated.

In addition, for Rekall to be able to insert a new row into the table, it must be able to
ascertain the unique key value for the row which is inserted.

For some databases, this is always possible. For instance, in PostgreSQL every row
has associated with it a unique indeitifier called the oid, which can be retrieved along
with row data; after a new row is inserteed, the oid of that row can be ascertained.
Similarly, Oracle has a rownum.

In other cases, however, this is not always possible. MySQL can mark a column as
auto-increment, in which case an incrementing value is automatically generated for
each row inserted; this can be ascertained immediately after the insertion. However,
if there is no auto-increment column, this is not possible.

Tables Created by Rekall
Rekall defines a column pseudo-type Primary Key. The interpretation of this varies
from server database to server database, but in all cases it is mapped to a column
which provides a unique key which satisfies the requirements listed above for row
insertion. For instance, using MySQL as the server database it will map to a 4-byte
integer column which is marked as primary key and auto-increment.

If you are creating a new table from within Rekall, and you have no particular reason
to do otherwise, the best course is to use the Primary Key pseudo-column type.

Note that if you explicitly create a column which matches the Primary Key pseudo-
column type, then it will appear in the table designer as type Primary Key.

Accessing Extant Tables
If you use Rekall to access an existing table in an existing database, then there are
three possibilities.

• If Rekall can identify a column as providing a suitable unique key, which can also
be retrieved after row insertion, then row update, deletion and insertion will work.
In MySQL for instance, any auto-increment column will suffice.

• If Rekall can identify a column as providing a unique key, but cannot retrieve the
column value after a row insertion, then Rekall will be able to update and delete
columns, but not insert 1 them.

119

Appendix A. Primary and Unique Key Columns

• If Rekall cannot identify any unique key column, then it can display table data, but
it cannot update or delete rows, nor insert new rows.

Specifiying Unique Key Columns
When a form (or report) is being designed, Rekall asks for the Unique Key column for
the table which is being accessed by the form. Rekall will try to pick a default using
the following criteria:

• If a Rekall can determin a column containing a unique key which can be deter-
mined after row insertion, then it will use that column. Update, deletion and inser-
tion are possible.

• If the above is not possible, but a unique column can be found, then it will use that
column. Update and deletion are possible, but insertion is not possible.

• If neither of the above are possible, no default it used.

You can, of course, specify any column as the unique key column, in which case Rekall
will issue appropriate warnings if it does not fulfill the first case above.

The same situation also applies to the master property which links data in a sub-form
to the row being displayed in the parent form.

Key Generator Functions
The next release of Rekall will include key generator functions, which can be used to
generate unique keys for newly insterted rows. This will help, for instance, the situ-
ation where Rekall is accessing an extant database which is itself already accessed by,
say, scripts which contain code to generate unique key values.

Notes
1. Rekall could not insert and then display, even preventing subsequent update or

deletion of the row. Consider the case where row insertion triggers a server database
event which updates another column which is displayed in the form. There would
be no way of retrieving the column value.

120

Appendix B. Database Drivers

This appendix describes the limitations associated with each server database sup-
ported by Rekall.

At present, Rekall contains its own server database drivers, and does not use KDE-
DB. This is because KDE-DB is currently suspended, pending the introduction of
QT3. which includes a database access module.

The first main area affected by the server database is column types. Currently, Rekall
knows about most of the standard SQL types. The drivers attempt to map these to
the most appropriate type provided by the server database.

The other main area affected is the retrieval of unique keys from newly inserted rows,
as refered to in the first appendix.

MySQL
Rekall supports the MySQL blob types. The Rekall types Binary will be mapped to an
appropriately blob type according to the specified size. Rekall will also so map its Text
type if the requested size is sufficiently large.

The driver can only retrieve an inserted row if that row contains an auto-increment
column, unless the user specifies a column as unique and the user enters the unique
value. This restriction should be somewhat aleviated in a future release of Rekall with
the introduction of key generator functions (see the previous appendix).

PostgreSQL
Although PostgreSQL supports large objects, these require explicit programming sup-
port in the driver. This is not currently present, though will appear in a later release
of Rekall; columns are currently limited to a maximum size of around 8100 bytes. For
similar reasons, the binary type is not yet implemented.

It is always possible to retrieve the last inserted row, and hence any unique key in
that row even if the key is generated by the PostgreSQL server (for instance, a serial
column).

XBase
XBase itself does not provide an SQL interface. The Rekall driver accesses XBase files
via the XBSQL library, which implements a limited subset of SQL.

XBase has a restricted set of types:

• Logical.

• Numeric: up to 16 digits with a sign, or 17 without.

• Floating point: up to 17 digits, less space for a sign or decimal point.

• Character: up to 254 characters, no null characters.

• Date: eight characters, in the format YYYYMMDD.

• Memo: up to 32760 characters, including nulls.

121

Appendix B. Database Drivers

There are two other major restrictions. Firstly, XBase has no notion of not null columns,
and does not distinguish an empty field from a null field.

Secondly, there is no notion of a primary key column. The driver works round this
by mapping the pseudo-type Primary Key to a character field of length 22, provided
that this is the first column in the table. It generates key values by concatenating the
time at which the driver was started (expressed as seconds since 1970) with an index
that increments for each record inserted. This is very likely (but not guaranteed) to
be unique.

The driver can always retrieve information about a row which has just been inserted.

122

Appendix C. The XBase interface

Rekall provides access to XBase format files using an SQL wrapper XBSQL which
implements a limited subset of SQL.

Currently, the XBSQL driver which accesses XBase format files supports the follow-
ing:

• select e1, ... from t1, where c1 ... order by o1, ...

• insert into t values (e1, ...)

• insert into t (c1, ...) select ...

• insert into t select ...

• insert into t (c1, ...) values (e1, ...)

• update t set c1 = e1, ... where c1, ...

• delete from t where c1, ...

• create table t (colspec, ...)

• drop table t

Expressions e1 are currently fairly limited, just some basic arithmetic and string con-
catenations, plus equality/inequality, greater/less greater-or-equal/less-or-equal.

Available column types for create column specifications are:

• int

• double

• char

• blob

• date

XBase files all contain fixed-width columns, with the exception of the blob type, which
maps to a memo column. The first three cases can therefore have (width) appended.
Individual columns can be indexed, for example, (...., ident int(10) index, ...).

Note the XBase has no notion of a not-null column, nor of a primary key. The latter is
handled by Rekall using a 22-character wide char column, when it is the first column
in the table; Rekall generates key values which are almost guaranted to be unique 1 .

Note that in the table designer, int appears as decimal.

Unsupported SQL includes

• sub-selects

• create as

• alter table ...

• aggregate functions (including count(*))

• group by and having

• inner, etc., joins

123

Appendix C. The XBase interface

Notes
1. The key value is generated by concatenating the system time (in seconds since

the epoch) at which the driver is started, with a serial value which is incremented
by one for each key generated. Hence, an example key is 1008341402.000000023

124

Appendix D. Object Properties

This appendix lists the properties associated with each type of object. The tables are
formatted as below, showing the internal property name, the legend which appears
in the property dialogs, and the description (which are the text that appears in the
property dialogs when a property is being edited).

Note that there is a fair degree of duplication below. The properties that are specific
to reports and forms, rather than than the blocks from which they are derived, have
been separated out. However, for data controls the properties are listed in full.

Name Property dialog legend

Description

Form Properties

language Scripting language

Scripting language to be used for script modules in this form

caption Form caption

Caption text to be displayed when form is active

stretch Scretchable

If set the form can be stretched (resized) when it is displayed;
otherwise, the form layout is fixed.

onload On Load

Script routine to be invoked when the form is loaded. A value like
#Init invokes an external function called onFormInit; otherwise define
a function called eventFunc whose single argument is the form.

onunload On UnLoad

Script routine to be invoked when the form is closed. A value like
#Cleanup invokes an external function called onFormCleanup;
otherwise define a function called eventFunc whose single argument
is the form.

modlist Script modules

List of script modules to be used by this form

implist Import modules

List of script modules to be imported by inline scripts in this form.

paramlist Parameters

List of parameters which can be set when the form is executed.
Parameter values can be substituted into expressions and such.

blktype Top-level block type

The top-level block may contain a menu (no query), or acess a query
or a table

125

Appendix D. Object Properties

Remaining properties are as for for blocks.

Form Block Properties

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the block area in pixels

h Height

Height of the block area in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

name Control name

Control name, used to access control from scripts

master Parent field

Field in parent query used to link to child field in this block’s query

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

child Child field

Field in this block’s query used to link to parent expression

bgcolor Background colour

Background colour

autosync Automatic update

126

Appendix D. Object Properties

Enabling this option will case field changes to be stored in the
database whenever focus moves to a different row or block

frame Frame style

Specifies the frame style and width for the block.

showbar Show Scroll Bar

Setting this option will show a vertical scroll bar which indicates the
range of rows displayed, and allows scrolling through them.

rowcount Row count

Number of rows of fields to be shown in this block. If set to zero then
the number of calculated based on block size and row spacing.

dx X-delta

X-offset in pixels between fields if the rowcount is greater than one

dy Y-delta

Y-offset in pixels between fields if the rowcount is greater than one

onaction On action

Script routine to be invoked when a block-level action is about to take
place. A value like #Action invokes an external function called
onBlockAction; otherwise define a function called eventFunc whose
two arguments will be the block and the action code.

onuncurrent On uncurrent

Script routine to be invoked when a record ceases to be current. A
value like #UnCurrent invokes an external function called
onBlockUnCurrent; otherwise define a function called eventFunc
whose two arguments will be the block and the query row being left.

oncurrent On current

Script routine to be invoked when a record becomes current. A value
like #Current invokes an external function called onBlockCurrent;
otherwise define a function called eventFunc whose two arguments
will be the button and the query row number.

ondisplay On display

Script routine to be invoked when a record is displayed. A value like
#UnCurrent invokes an external function called onBlockUnCurrent;
otherwise define a function called eventFunc whose two arguments
will be the block and the query row being left.

preinsert Pre-Insert

Script routine to be invoked just before a new row is inserted into a
table. A value like #Insert invokes an external function called
onBlockInsert; otherwise define a function called eventFunc whose
two arguments will be the block and the query row number. Insert is
aborted unless the function returns true.

preupdate Pre-Update

127

Appendix D. Object Properties

Script routine to be invoked just before a row is updated in a table. A
value like #Update invokes an external function called
onBlockUpdate; otherwise define a function called eventFunc whose
two arguments will be the block and the query row number. Update is
aborted unless the function returns true.

predelete Pre-Delete

Script routine to be invoked jusst before a row is deleted from a table.
A value like #Delete invokes an external function called
onBlockDelete; otherwise define a function called eventFunc whose
two arguments will be the block and the query row number. Deletion
is aborted unless the function returns true.

postquery Post-Query

Script routine to be invoked just after a select query has been issued,
but before any data is displayed. A value like #PostQuery invokes an
external function called onBlockPostQuery; otherwise define a
function called eventFunc whose argument will be the block.

postsync Post-Sync

Script routine to be invoked just after an insert, update or delete
query has been issued A value like #PostSync invokes an external
function called onBlockPostSync; otherwise define a function called
eventFunc whose four arguments will be the block, the query row, the
action and the primary key of the affected row.

hidden Hidden fields

Hidden fields are used to retrieve values for use in scripts. The name
is the control name by which they are accessed; the expression is that
used in the database query.

Report Properties

lmargin Left margin

This specifies the left-hand page pargin in millimeters.

rmargin Right margin

This specifies the right-hand page pargin in millimeters.

tmargin Top margin

This specifies the top-of-page page pargin in millimeters.

bmargin Bottom margin

This specifies the bottom-of-page page pargin in millimeters.

blktype Top-level block type

The top-level block may contain a menu (no query), or acess a query
or a table

language Scripting language

128

Appendix D. Object Properties

Scripting language to be used for script modules in this report

caption Report caption

Caption text to be displayed when report is active

modlist Script modules

List of script modules to be used by this report

implist Import modules

List of script modules to be imported by inline scripts in this report.

printer KBReport.printer

KBReport.printer

printdlg KBReport.printdlg

KBReport.printdlg

paramlist Parameters

List of parameters which can be set when the report is executed.
Parameter values can be substituted into expressions and such.

Remaining properties are as for for blocks.

Report Block Properties

y Y-position

Y coordinate of the control relative to its parent

h Height

Height of the control in pixels

bgcolor Background colour

Background colour

name Control name

Control name, used to access control from scripts

hidden Hidden fields

Hidden fields are used to retrieve values for use in scripts. The name
is the control name by which they are accessed; the expression is that
used in the database query.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

oncurrent On current

129

Appendix D. Object Properties

Script routine to be invoked when a record becomes current. A value
like #Current invokes an external function called onBlockCurrent;
otherwise define a function called eventFunc whose two arguments
will be the button and the query row number.

postquery Post-Query

Script routine to be invoked just after a select query has been issued,
but before any data is displayed. A value like #PostQuery invokes an
external function called onBlockPostQuery; otherwise define a
function called eventFunc whose argument will be the block.

pthrow Page throw

Set this to record to throw a page after each record, to group to throw
a page after the last record, or none to disable page throws.

Block Header

h Height

Height of the control in pixels

bgcolor Background colour

Background colour

name Control name

Control name, used to access control from scripts

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

Block Footer

h Height

Height of the control in pixels

bgcolor Background colour

Background colour

name Control name

Control name, used to access control from scripts

notes Notes

130

Appendix D. Object Properties

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

Tabber

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

bgcolor Background colour

Background colour

frame KBTabber.frame

KBTabber.frame

name Control name

Control name, used to access control from scripts

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

TabberPage

131

Appendix D. Object Properties

y Y-position

Y coordinate of the control relative to its parent

bgcolor Background colour

Background colour

frame KBTabberPage.frame

KBTabberPage.frame

tabtext Tab Text

This setting specifies the text that appears in the tab.

name Control name

Control name, used to access control from scripts

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

Button Properties

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

bgcolor Background colour

Background colour

name Control name

132

Appendix D. Object Properties

Control name, used to access control from scripts

text Button text

Text displayed in the button

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

onclick On Click

Script routine to be invoked when the button is clicked. A value like
#Click invokes an external function called onButtonClick; otherwise
define a function called eventFunc whose single argument will be the
button.

Label

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

bgcolor Background colour

Background colour

font Font

Specify font

133

Appendix D. Object Properties

name Control name

Control name, used to access control from scripts

text Label text

Text to appear in the label

align Text alignment

Specify whether text should be horizontally aligned to the left
(default), centred or to the right

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

CheckBox

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

bgcolor Background colour

Background colour

name Control name

Control name, used to access control from scripts

expr Display expression

134

Appendix D. Object Properties

Expression for value to be displayed in the control. If empty, then the
control is not set by the query.

default Default value

Default value to use if field is not entered

rdonly Read Only

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

taborder Tab order

Tab and shift-tab cycle through controls in increasing tab order. A tab
order of zero means that the control cannot be entered by tabbing.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

onenter On enter

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

onchange On change

Script routine to be invoked when the value in the field is changed by
the user. A value like #Change invokes an external function called
onCheckChange; otherwise define a function called eventFunc whose
three arguments will be the control item, the query row number and
the new value.

135

Appendix D. Object Properties

Choice

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

bgcolor Background colour

Background colour

name Control name

Control name, used to access control from scripts

master Field name

The name of the column in the table or query which is displayed in
the choice control. If left empty then the choice control is not set from
the table or query

default Default value

Default value to use if field is not entered

values Values

This is the list of values which cab be selected. Values should be
separated by the | character

nullval Null value

Value to show when field contains null

nullok Null OK

If this option is set then then contents of the file may be null, ie.,
empty

rdonly Read Only

136

Appendix D. Object Properties

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

taborder Tab order

Tab and shift-tab cycle through controls in increasing tab order. A tab
order of zero means that the control cannot be entered by tabbing.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

morph Morph control

If morphing is enabled, then the control is drawn as a simple text
value when it does not have focous. This can be used to remove the
dropdown on Choice and Link controls.

onenter On enter

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

onchange On change

Script routine to be invoked when the value in the field is changed by
the user. A value like #Change invokes an external function called
onChoiceChange; otherwise define a function called eventFunc whose
three arguments will be the control item, the query row number and
the new value.

Link

137

Appendix D. Object Properties

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

bgcolor Background colour

Background colour

name Control name

Control name, used to access control from scripts

master Parent field

Field in parent query used to link to child field in the associated query

child Child field

Field in the associated query used to link to parent expression

default Default value

Default value to use if field is not entered

nullval Null value

Value to show when parent field contains null

nullok Null OK

If this option is set then then contents of the file may be null, ie.,
empty

rdonly Read Only

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

taborder Tab order

Tab and shift-tab cycle through controls in increasing tab order. A tab
order of zero means that the control cannot be entered by tabbing.

138

Appendix D. Object Properties

show Display expression

Expression for the associated query to be displayed in the link control

dynamic Dynamic

Set this option to get retrieve the list of possibe values each time focus
enters the control; otherwise, the list of generated when the form or
report which contains the link is started.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

morph Morph control

If morphing is enabled, then the control is drawn as a simple text
value when it does not have focous. This can be used to remove the
dropdown on Choice and Link controls.

onenter On enter

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

onchange On change

Script routine to be invoked when the value in the field is changed by
the user. A value like #Change invokes an external function called
onLinkChange; otherwise define a function called eventFunc whose
three arguments will be the control item, the query row number and
the new value.

139

Appendix D. Object Properties

Field

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

bgcolor Background colour

Background colour

font Font

Specify font

name Control name

Control name, used to access control from scripts

expr Display expression

Expression for value to be displayed in the control. If empty, then the
control is not set by the query.

default Default value

Default value to use if field is not entered

nullok Null OK

If this option is set then then contents of the file may be null, ie.,
empty

evalid Validator

If set, this specifies a regular expression used to validate the field
contents. Note that the expression is not anchored at either end.

igncase Ignore case

Character case is ignored when validating field contents

rdonly Read Only

140

Appendix D. Object Properties

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

format Format

This specifies the display format. Note that a format specification
implies a particular data type; number, date, etc.

taborder Tab order

Tab and shift-tab cycle through controls in increasing tab order. A tab
order of zero means that the control cannot be entered by tabbing.

align Text alignment

Specify whether text should be horizontally aligned to the left
(default), centred or to the right

mask Input mask

The input mask controls input to the field, providing a degree of input
formatting

helper Helper name

If set, then when focus enters the field a helper button appears, which
can be used to aid data entry. The setting specifies the helper;
currently only date is defined.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

morph Morph control

If morphing is enabled, then the control is drawn as a simple text
value when it does not have focous. This can be used to remove the
dropdown on Choice and Link controls.

onenter On enter

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

141

Appendix D. Object Properties

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

Memo

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

font Font

Specify font

frame Frame style

Specifies the frame style and width for the area in which the memo
control appears.

name Control name

Control name, used to access control from scripts

expr Display expression

Expression for value to be displayed in the control. If empty, then the
control is not set by the query.

default Default value

Default value to use if field is not entered

142

Appendix D. Object Properties

nullok Null OK

If this option is set then then contents of the file may be null, ie.,
empty

rdonly Read Only

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

taborder Tab order

Tab and shift-tab cycle through controls in increasing tab order. A tab
order of zero means that the control cannot be entered by tabbing.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

onenter On enter

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

onchange On change

Script routine to be invoked when the value in the mem is changed
by the user. A value like #Change invokes an external function called
onMemoChange; otherwise define a function called eventFunc whose
first two arguments will be the control item and the query row
number; the third argument is undefined.

hilite KBMemo.hilite

KBMemo.hilite

143

Appendix D. Object Properties

Pixmap

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

frame Frame style

Specifies the frame style and width for the area into which the image
is displayed.

name Control name

Control name, used to access control from scripts

expr Display expression

Expression for value to be displayed in the image. If empty, then the
image is not set by the query. In practice, the expression should yield
the data for an image.

default Default value

Default value to use if field is not entered

rdonly Read Only

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

taborder Tab order

Tab and shift-tab cycle through controls in increasing tab order. A tab
order of zero means that the control cannot be entered by tabbing.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

144

Appendix D. Object Properties

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

onenter On enter

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

onchange On change

Script routine to be invoked when the value in the field is changed by
the user. A value like #Change invokes an external function called
onPixmapChange; otherwise define a function called eventFunc
whose three arguments will be the control item, the query row
number and the new value.

Summary

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

145

Appendix D. Object Properties

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

bgcolor Background colour

Background colour

font Font

Specify font

name Control name

Control name, used to access control from scripts

expr Summary expression

Expression for value to be summarised in the field

format Format

This specifies the display format. Note that a format specification
implies a particular data type; number, date, etc.

align Text alignment

Specify whether text should be horizontally aligned to the left
(default), centred or to the right

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

summary Summary function

Specify the function used to summaries data values

reset Page Reset

Reset summary value on each page

RowMark

x X-position

146

Appendix D. Object Properties

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

bgcolor Background colour

Background colour

frame KBRowMark.frame

KBRowMark.frame

showrow Show row number

Set this option to display the query row number

name Control name

Control name, used to access control from scripts

default Default value

Default value to use if field is not entered

rdonly Read Only

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

onenter On enter

147

Appendix D. Object Properties

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

RichText

x X-position

X coordinate of the control relative to its parent

y Y-position

Y coordinate of the control relative to its parent

w Width

Width of the control in pixels

h Height

Height of the control in pixels

xmode X-mode

This setting specified whether the control width is fixed width,
whether it floats relative to the right-hand side of its block, or whether
it stretches as its block width changes. The setting affects the
interpretation of the width value.

ymode Y-mode

This setting specified whether the control height is fixed width,
whether it floats relative to the bottom of its block, or whether it
stretches as its block height changes. The setting affects the
interpretation of the height value.

fgcolor Text colour

Text colour

bgcolor Background colour

Background colour

font Font

148

Appendix D. Object Properties

Specify font

name Control name

Control name, used to access control from scripts

expr Display expression

Expression for value to be displayed in the control. If empty, then the
control is not set by the query.

default Default value

Default value to use if field is not entered

rdonly Read Only

Set this option to prevent update of the displayed value by the user.
Note that the control can still be updated from a script.

taborder Tab order

Tab and shift-tab cycle through controls in increasing tab order. A tab
order of zero means that the control cannot be entered by tabbing.

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

noupdate No Update

If this option is set, the database is never updated from the control
(even if the contents are changed). This is useful if you wish to display
a value in more that one control, and all but done are marked as read
only

onenter On enter

Script routine to be invoked when focus enters a control. A value like
#Enter invokes an external function called onItemEnter; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onleave On leave

Script routine to be invoked when focus leaves a control. A value like
#Enter invokes an external function called onItemLeave; otherwise
define a function called eventFunc whose two arguments will be the
control item and the query row number.

onset On set

Script routine to be invoked when the value in the control is set from
the database. A value like #Set invokes an external function called
onItemSet; otherwise define a function called eventFunc whose three
arguments will be the control item, the query row number and the
value.

149

Appendix D. Object Properties

Table Query

server Server name

Name of a server in the database servers list

table Table name

Name of a table in the database

primary Unique key

Name of a unique key column in the table. Strictly, any unique
column will suffice, but the primary key column if there is one is
preferred.

where Where condition

Optional SQL where expression to filter rows

order Row order

Optional SQL order expression to specify order or rows

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

Rekall Query

query Query name

Name of the query associated with this block

toptable Top-level table

This setting specifies the table in the query which will appear at the
top (outermost) level. The nesting of sub-forms or sub-reports
depends on this.

where Where condition

Optional SQL where condition, appended to the where conditions
implicit in the underlying query

order Row order

Option SQL order expression, appended to any ordering conditions in
the underlying query

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

group Row grouping

Option SQL group by expression, appended to any ordering
conditions in the underlying query

150

Appendix D. Object Properties

having Having

Option SQL having expression, appended to any ordering conditions
in the underlying query

Free-text SQL Query

query Query text

Text of the SQL query

server Server name

Name of a server in the database servers list

notes Notes

The Notes setting may be used for any arbitrary notes, for instance
for documentation. Rekall does nothing with the value, other than to
preserve it.

151

Appendix D. Object Properties

152

Appendix E. Object Methods

Block Methods

getNumRows Number of rows in associated query

Return number Number of rows

getQueryRow Get current query row number

Return number Row number

totoQueryRow Move to specified row in query

Return bool Success

rowNum number No Row number

getRowValue Get value from associated query

Return string Value

ctrlName string No Column required, as control name

rowNum number No Row number

setRowValue Set value in associated query

Return void

ctrlName string No Column required, as control name

rowNum number No Row number

value string No Value

doAction Perform action in block

Return bool Success

action number No Action code, see RekallMain

isInQuery See if query (find) is in progress

Return bool Query (find) in progress

Button Methods

setText Set button text

Return void

text string No Button text

153

Appendix E. Object Methods

Choice (ComboBox) Methods

currentItem Get current item

Return number Currenly selected item number

setCurrentItem Update current item

Return void

item number No New current item number

Form Methods

openForm Open a named form

Return bool Success

formName string No Name of form to be opened

parameters dictionary Yes Parameter dictionary

openReport Open a named report

Return bool Success

reportName string No Name of report to be opened

parameters dictionary Yes Parameter dictionary

openTextForm Open an XML form definition

Return bool Success

xmlDefn string No XML definition

parameters dictionary Yes Parameter dictionary

openTextReport Open an XML report definition

Return bool Success

xmlDefn string No XML definition

parameters dictionary Yes Parameter dictionary

openServer Get low-level connection to server
database

Return pydbi Connection object

serverName string No Server name

executeCopier Execute a copier

Return number Number of rows copied

copierName string No Copier name

parameters dictionary Yes Parameter dictionary

getServerList Get list of servers

Return list List of server names

getObjectList Get list of objects on server

154

Appendix E. Object Methods

Return list List of object names

serverName string No Server name

objectType string No Object type

getObjecttext Get XML definition of object

Return string XML definition text

serverName string No Server name

objectName string No Object name

Container Methods

getNumRows Number of rows in associated query

Return number Number of rows

getQueryRow Get current query row number

Return number Row number

getRowValue Get value from associated query

Return string Value

ctrlName string No Column required, as control name

rowNum number No Row number

setRowValue Set value in associated query

Return void

ctrlName string No Column required, as control name

rowNum number No Row number

value string No Value

Item Methods

setValue Update value in control

Return void

rowNum number No Query row number

value string No Value

getValue Get value from control

Return string Value

rowNum number No Query row number

setTabOrder Set control tab ordering

155

Appendix E. Object Methods

Return void

order number No Tab order number

setEnabled Enable or disable control

Return void

rowNum number No Query row number

enable bool No True to enable

setVisible Show or hide control

Return void

rowNum number No Query row number

show bool No True to show

isEnabled Test if control is enabled

Return bool True if enabled

rowNum number No Query row number

isVisible Test if control is visible

Return bool True if visible

rowNum number No Query row number

Label Methods

setText Set label text

Return void

text string No Label text

Object Methods

setEnabled Enable or disable control

Return void

enable bool No True to enable

setVisible Show or hide control

Return void

show bool No True to show

isEnabled Test if control is enabled

Return bool True if enabled

isVisible Test if control is visible

156

Appendix E. Object Methods

Return bool True if visible

getName Get control name

Return string Name

setAttr Set attribute (property)

Return void

name string No Attribute name

value string No Value to set

getAttr Get attribute (property)

Return string Attribute value

name string No Attribute name

width Get control width

Return number Width

height Get control height

Return number Height

resize Resize control

Return void

width number No New width

height number No New height

getParent Get parent object if any

Return object Parent or None

getBlock Get enclosing block if any

Return block Enclosing block or None

getForm Get enclosing form if any

Return form Enclosing form or None

lastError Get last error

Return string Text message for last error

getNamedCtrl Locate control by name

Return object Control or None if not found

name string No Control name relative to this object

bool errorOK Yes Don’t show error dialog if no control
found

Tabber Page Methods

setCurrent Make this page current

Return void

157

Appendix E. Object Methods

RekallMain functions

messageBox Show a simple popup message box

Return void

string No Message to display

string Yes Popup box caption

queryBox Show a simple Yes/No query box

Return void

string No Message to display

string Yes Popup box caption

promptBox Show a simple prompt box

Return void

string No Message to display

string Yes Default value

string Yes Popup box caption

choiceBox Show a popup with selection combobox

Return void

string No Message to display

list Yes List of entries for combobox

string Yes Popup box caption

logscript Write message to script log window

Return void

string No Message to be written

158

Appendix F. tkcRekall: Rekall on the Sharp Zaurus

tkcRekall is a port of Rekall to the Sharp Zaurus handheld device.

First, this is not a stripped down version which has but a small fraction of the func-
tionality of the desktop version. Rather, it has almost all of the desktop functionality.
The limitations are primarily those of the Zaurus itself:

• The amount of memory available on the Zaurus is small compared to many desk-
top systems, and tkcRekall itself occupies around 7M of memory.

• The Zaurus screen is much smaller than a desktop or portable display, so the
amount of information than can be displayed is proportionally less.

• The Zaurus processor is significantly slower than most desktops and portables
now in use.

The differences between tkcRekall and the desktop version are primarily in the layout
of menus and toolbars, and the layout of dialogs. The remainder of this appendix
summaries the differences,.

Right-Click Operation
A lot of Rekall functionality is accessed using the right-hand mouse button. In tkcRekall,
this is achieved by pressing and holding with the stylus. In some places, for instance
inside form controls this is not available at all, however, all functions can be accessed
via double-clicks, or the menu or tool bar.

Menus and Toolbars
None of the windows in tkcRekall have menus, in order to save the space they would
otherwise occupy. However, the menus found in the desktop version can be accessed
via the left-hand most button that appears on each toolbar.

Dialog Layouts
Generally, dialogs have been altered to remove the space between controls, and to
make better use of the landscape shape of the Zaurus screen. In a few cases some
dialog controls have been removedbut you should always be able to achieve the same
end result.

For instance, the tab order dialog lacks the buttons which allow automatic tab order-
ing, but you can still set any required ordering.

Table Design
The table design window shows the columns and the additional column details un-
der two separate tabs, rather than above one another. As a general point, tabbed
controls are used more often in tkcRekall to componsate for the small screen.

159

Appendix F. tkcRekall: Rekall on the Sharp Zaurus

Query Design
The query design window has been changed. Instead of showing the table, expres-
sion and SQL windows at the same time (with the sizes adjustable), they appear un-
der three separate tabs. The popup menu which allows you to set table aliases (and
to remove tables from the query) is accessed by "right-clicking" in the table title bar,
rather than in the field list.

Copier Design
The copier design window has been changed so that, rather than the source and des-
tination panels appearing side-by-side, they are overlaid, and are selected via addi-
tional buttons on the toolbar.

160

	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Overview and Tour
	Accessing a Database Server
	The Rekall Database File
	SDI or MDI: That is the Question
	The Rekall Server Dialog
	Viewing Tables
	Forms
	Rekall Queries
	Reports

	Chapter 3. Connecting to Database Servers
	The Server Dialog
	The !Files Entry
	The Rekall Objects and Design Tables
	And Now, the Real Thing

	Chapter 4. Accessing Tables with Rekall
	Data Types in Rekall and Servers
	Designing and Altering Tables
	Viewing and Updating Data in Tables
	Other Table Design Settings
	Some Miscellanea

	Chapter 5. Designing and Using Forms
	Creating a Form
	Creating a New Form: The Form Dialog
	Creating a New Form: The Query Dialog
	Creating a New Form: The Block Dialog
	Adding Controls to the Form
	Positioning Controls
	Saving and Showing the Form
	Adding Navigation Buttons
	Some Magic: Enabling and Disabling Navigation Buttons

	Creating a Form with a SubForm
	Containers and Stretchable Forms
	Form Navigation
	Menu-Only Forms

	Chapter 6. Queries
	Creating Queries
	Joins: Inner, Outer and none
	Using a Query in Forms and Reports
	Free-Text Queries

	Chapter 7. Designing and using Reports
	Creating a Report
	Printers and Printing
	Design View, Data View, Print and Preview

	Chapter 8. The Structure of Forms and Reports
	Form Controls
	Field
	Memo
	Choice
	Link
	Pixmap
	Check
	Rich Text
	Row Mark
	Label
	Button
	Tab Control
	Container

	Report Controls
	Field
	Link
	Pixmap
	Summary
	Label
	Headers and Footers

	Forms and Reports are Trees
	Objects are Classes
	KBNodes, KBObjects and KBItems
	KBNode
	KBObject
	KBItem

	KBBlock and Friends
	Data Controls
	Containers: KBHeader, KBFooter, KBContainer, KBTabberPage
	Forms and Reports
	Properties
	Common Properties
	Notes
	X-Position, Y-Position, Width and Height (x, y, w, h)
	X-mode and Y-mode (xmode, ymode)
	Control name (name)
	Background Colour (bgcolor)
	Frame Style (frame)
	Text Colour (fgcolor)
	Display Expression (expr)

	Data-Related Properties
	Row Count (rowcount)
	X and Y Spacing (dx, dy)
	Default Value (defval)
	Null OK (nullok)
	Validator (evalid)
	Ignore Case (igncase)
	Read Only (rdonly)
	Format (format)
	Text Alignment (align)
	Input Mask (mask)

	Block Properties
	Show Scroll Bar (showbar)
	Parent/Child (master, child)

	Form Properties
	Streatchable (stretch)
	Scripting Language (language)
	Form Caption (caption)
	Script Modules
	Import Modules

	Report Properties
	Margins (lmargin, rmargin, tmargin, bmargin)
	Printer (printer)
	Show Print Dialog (printdlg)

	Chapter 9. Scripting with Python
	Introduction to Scripting
	Events
	Expressions
	Modules

	An Aside: Query Rows
	Examples
	Record Navigation the Proper Way
	Locking Fields
	Roll Your Own Form

	Object Events
	Button Events
	On Click

	Item Events
	On Set
	On Change
	On Enter
	On Leave

	Block Events
	On Action
	On UnCurrent
	On Current
	On Display
	Pre Insert
	Pre Update
	Pre Delete
	Post Query
	Post Sync

	Form Events
	On Load
	On UnLoad

	Manipulating Objects
	KBObject Methods
	setEnabled(bool)
	isEnabled()
	setVisible(bool)
	isVisible()
	getName()
	getAttr(attrName)
	width()
	height()
	resize(width, height)
	getBlock()
	getNamedCtrl(name, errorOK)
	getForm()
	lastError()

	KBItem Methods
	setValue(row,value)
	getValue(row)
	setEnabled(row,bool)
	isEnabled(row)
	setVisible(row,bool)
	isVisible(row)

	Containers Methods
	getNumRows()
	getQueryRow()
	gotoQueryRow(row)
	getRowValue(name, row)

	KBButton Methods
	setText(text)

	KBLabel Methods
	setText(text)

	Tabber and Tabber Page Methods
	setEnabled(bool)
	setCurrent()

	KBForm Methods
	openForm(name, params)
	openReport(name, params)
	executeCopier(name)
	openTextForm(text, params)
	openTextReport(text, params)

	Python Scripting Help

	Chapter 10. The Python Debugger
	Breakpoints
	Exceptions

	Chapter 11. Executing SQL from Python Scripts
	Connecting to the server database
	Using a cursor
	The RekallPYDBI Code

	Chapter 12. Import and Export: The Copier
	The Copier
	Copier Sources
	File
	Table
	Arbitrary SQL

	Copier Destinations
	File
	Table
	XML

	Chapter 13. Executing Forms and Report with Parameters
	Using Parameters
	Setting up for User Entry
	User Input
	Passing Parameters via Scripts
	Opening Forms and Reports
	Parameter Passing: An End-Note

	Appendix A. Primary and Unique Key Columns
	Identifying Rows in Tables
	Tables Created by Rekall
	Accessing Extant Tables
	Specifiying Unique Key Columns
	Key Generator Functions

	Appendix B. Database Drivers
	MySQL
	PostgreSQL
	XBase

	Appendix C. The XBase interface
	Appendix D. Object Properties
	Form Properties
	Form Block Properties
	Report Properties
	Report Block Properties
	Block Header
	Block Footer
	Tabber
	TabberPage
	Button Properties
	Label
	CheckBox
	Choice
	Link
	Field
	Memo
	Pixmap
	Summary
	RowMark
	RichText
	Table Query
	Rekall Query
	Free-text SQL Query

	Appendix E. Object Methods
	Block Methods
	Button Methods
	Choice (ComboBox) Methods
	Form Methods
	Container Methods
	Item Methods
	Label Methods
	Object Methods
	Tabber Page Methods
	RekallMain functions

	Appendix F. tkcRekall: Rekall on the Sharp Zaurus
	Right-Click Operation
	Menus and Toolbars
	Dialog Layouts
	Table Design
	Query Design
	Copier Design

