
WebCab Portfolio for .NET v5.0

http://www.webcabcomponents.com

Preface

This documentation accompanies the WebCab Portfolio .NET Service. The purpose of this
documentation is to provide a clear and concise description of all aspects that are likely
to be encountered in real life applications by developers and users of this .NET Service.
WebCab Portfolio contains methods which use the Markowitz and Capital Asset Pricing
Model to construct a portfolio which for a given level of risk offers the greatest expected
return.

The first chapter of this documentation contains a brief introduction to the most im-
portant implemented features and related system requirements. In chapter two we let the
developer quickly get started with deploying the component by detailing deployment tech-
niques. The third chapter contains the mathematical documentation, which represents the
theoretical background of this component’s implemented business functionality. Chapters
four to seven contains the programmer’s guide containing a road map for developers to
take advantage of every feature and capability of this product for use with Microsoft’s
Office, Visual Studio 6, Borland’s C++ Builder and the .NET Framework respectively. In
chapter eight we provide some examples to illustrate how features detailed within the pro-
grammer’s guides can be applied in practice. Finally, we introduce WebCab Components,
its philosophy and approach to serving the .NET development community with robust and
powerful enterprise applications.

Good luck with your project and thank you for your interest in our components.

The WebCab Components Team

i

Contents

Preface i

1 Introduction 1
1.1 Product Description . 1

1.1.1 Overview . 1
1.1.2 Details . 1

1.2 Package Details . 3
1.3 Prerequisites and Compatibility . 4

1.3.1 System Requirements . 4
1.3.2 Compatibility . 4

2 Where do I Start? 5
2.1 What Type of User Are You? . 5
2.2 What Do I Need to Install and Where Can I Get It? 6

2.2.1 Installing the IIS Web server . 7
2.2.2 What Do I Need if I am Using Windows 2003? 8

2.3 Deploying the .NET Service . 10
2.3.1 Deploying a Component . 10
2.3.2 Deploying an XML Web Service . 11

2.4 Using the DLLs inside an IDE . 13
2.4.1 Using the DLL within a Visual Studio .NET project 13
2.4.2 Using the DLL within a Borland’s C# Builder project 13

2.5 Client Examples . 14
2.5.1 Running the Console Client Example 14
2.5.2 ASP.NET Client Example . 15
2.5.3 XML Web service examples . 15

2.6 Testing the Component . 17
2.6.1 Accessing the Online ASP.NET Demo 17
2.6.2 Online XML Web service examples 18
2.6.3 Using .NET Web Service Studio . 19

3 Mathematical Documentation 22
3.1 Assumptions, Questions, Functionality and Problems 22

3.1.1 Assumptions of Markowitz Theory 22

ii

CONTENTS CONTENTS

3.1.2 Assumptions of Capital Asset Pricing Model (CAPM) 23
3.1.3 What problems do these Models address 23
3.1.4 Range of Functionality contained within the classes 24
3.1.5 Problems with the Application of the Markowitz Theory and CAPM 25

3.2 Preliminaries and Auxiliary classes . 28
3.2.1 Choices in Approach and other issues 28
3.2.2 Basic Formulae for the Return, Covariance, Correlation and Risk . 29

3.3 Expected Return and Risk from a Portfolio with two Assets 33
3.3.1 Motivation . 33
3.3.2 Formulation for a Portfolio of two assets 34
3.3.3 Minimum risk of a portfolio with two assets 34

3.4 Markowitz Theory . 35
3.4.1 Overview of Markowitz Theory Implemented 35
3.4.2 Construction of the Efficient Frontier 36
3.4.3 Constraints effect on the range of the Efficient Frontier 37
3.4.4 Consistency of the Assets and Effects on the Efficient Frontier . . . 38
3.4.5 Selecting the Optimal Portfolio . 45
3.4.6 Discovering the Investors risk - return profile 48
3.4.7 Examples of selecting the Optimal Portfolio from the Investors Util-

ity Function . 49
3.5 Capital Asset Pricing Model (CAPM) . 52

3.5.1 Overview . 52
3.5.2 Nature of the Capital Asset Pricing Model (CAPM) 53
3.5.3 Applying the CAPM . 55
3.5.4 Summary of the CAPM . 59
3.5.5 Putting constraints on the level of borrowing and lending 60

3.6 Performance Evaluation . 62
3.6.1 Comparing the Sharpe and Treynor Performance Measures 63

3.7 Further and Supplementary Reading . 63
3.7.1 Supplementary Reading . 63
3.7.2 Further Reading . 63

4 Programmer’s Guide for Microsoft Office 64
4.1 Developing with VBA from Office . 64

4.1.1 Open the Visual Basic Editor . 65
4.1.2 Add a Code Module . 65
4.1.3 Declare a Subroutine . 65
4.1.4 Add a Reference to This Product 66
4.1.5 Declare a Class Instance Variable 68
4.1.6 Create a Class Instance . 68
4.1.7 Call a Class Method . 69
4.1.8 Display the Method Result . 69
4.1.9 Run the Subroutine . 69
4.1.10 A Generic VBA Example for Office 72

iii

CONTENTS CONTENTS

4.2 Integrating with Microsoft Excel . 73
4.2.1 Open the Visual Basic Editor . 73
4.2.2 Add a Code Module . 73
4.2.3 Declare a Function . 74
4.2.4 Add a Reference to This Product 74
4.2.5 Declare a Class Instance Variable 74
4.2.6 Create a Class Instance . 75
4.2.7 Call a Class Method . 75
4.2.8 Store the Method Result as a Function Return Value 75
4.2.9 Insert the Function in your Worksheet 76

5 Programmer’s Guide for Visual Studio 6 80
5.1 Developing with Visual Basic 6 . 80

5.1.1 Add a Reference to This Product 80
5.1.2 Declare a Class Instance Variable 81
5.1.3 Create a Class Instance . 82
5.1.4 Call a Class Method . 83

5.2 A specific Visual Basic Example . 83
5.3 Developing with Visual C++ 6 . 87

5.3.1 Open a New or Existing Project . 87
5.3.2 Add All COM Specific ’include’ Declarations 91
5.3.3 Call ”CoInitialize” . 91
5.3.4 Import the Type Library for this Product 92
5.3.5 Connect to a COM Server . 92
5.3.6 Declare the Parameter Types and Values 93
5.3.7 Declare the Return Type . 95
5.3.8 Call the Method . 95
5.3.9 Call ”CoUninitialize” . 96
5.3.10 A Generic Visual C++ Example . 97

6 Programmer’s Guide for Borland C++ Builder 100
6.1 Developing with Borland C++ Builder . 100

6.1.1 Open a New or Existing Project . 101
6.1.2 Add all COM Specific ”Include” Declarations 103
6.1.3 Call ”CoInitialize” . 103
6.1.4 Create a Class Instance . 104
6.1.5 Obtain a Method ID . 105
6.1.6 Declare the Parameter Values and Types 105
6.1.7 Declare the Return Type . 106
6.1.8 Call the Method . 106
6.1.9 Call ”CoUninitialize” . 107
6.1.10 A Generic Borland C++ Builder Example 107

iv

CONTENTS CONTENTS

7 Programmer’s Guide for .NET 110
7.1 Developing with .NET Class Libraries . 110

7.1.1 Stand-alone C# .NET Applications 110
7.2 Developing with XML Web Services . 112

7.2.1 Deploying the XML Web Services 112
7.2.2 Writing XML Web Service Clients 112
7.2.3 Writing Console XML Web Service Clients 113
7.2.4 Importing Web services into Visual Studio .NET projects 115

7.3 Connecting to a Database with our .NET Libraries 116
7.3.1 Overview . 116
7.3.2 The ADO Mediator . 116

7.4 Portfolio Methods Overview . 121
7.5 Exceptions . 122

8 Examples 123
8.1 Question and Answer (QA) Client Examples 123

8.1.1 Overview . 123
8.1.2 Structure of QA Examples Directory 123
8.1.3 Quick Start Guide . 125
8.1.4 Explanation of the QA Directory Structure and its files 125
8.1.5 Remarks on .NET compilers . 127

8.2 Custom QA Examples . 127
8.2.1 Markowitz Custom Clients . 128
8.2.2 Capital Market Custom Clients . 133
8.2.3 Asset Parameters Custom Clients 136
8.2.4 Two Asset Portfolio Custom Clients 137
8.2.5 Optimal portfolio . 138

8.3 Database Example with JDBC Mediator 139
8.4 How to use Markowitz Theory? . 140

8.4.1 How to find the portfolio from a collection of assets that exhibit the
lowest risk for a given expected future return? 140

8.4.2 How to construct the Efficient Frontier? 141
8.4.3 How to estimate the expected return from the historical returns? . . 142
8.4.4 How can I measure the performance characteristics of a portfolio? . 143

9 Guide to WebCab Components 145
9.1 The Company . 145
9.2 Presentation of Products . 145
9.3 Supported Clients, IDEs, Containers and DBMSs 145
9.4 Transparent Functionality . 146
9.5 Company Culture and Activity . 146
9.6 Product Life cycle . 146
9.7 Support, Warranty and Upgrades . 146

v

Chapter 1

Introduction

1.1 Product Description

1.1.1 Overview

Apply Markowitz Theory and Capital Asset Pricing Model (CAPM) to analyze and con-
struct the optimal portfolio with/without asset weight constraints with respect to Markowitz
Theory by giving the risk, return or investors utility function; or with respect to CAPM by
given the risk, return or Market Portfolio weighting. Also includes Performance Evaluation,
extensive auxiliary classes/methods including equation solve and interpolation procedures,
analysis of Efficient Frontier, Market Portfolio and CML.

1.1.2 Details

This suite includes the following features:

� Markowitz Model - Construct optimally diversified portfolios.

– Efficient Frontier - Construct the Efficient Frontier with or without con-
straints on the asset weights.

– Utility Function - Discover and set the investors utility function.

– Optimal Portfolio - Select the optimal portfolio or set of portfolios by pro-
viding the expected return desired, the maximum risk or the investors utility
function.

� Capital Asset Pricing Model (CAPM) - Construct optimally diversified port-
folios with can hold or borrow cash.

– Efficient Frontier - Construct the Efficient Frontier with or without con-
straints on the asset weights.

– Market Portfolio - Find the Market Portfolio which offer the greater expected
return per unit of risk.

1

Introduction Chapter 1

– Capital Market Line (CML) - Construct the CML with contains the optimal
portfolio with respect to the CAPM.

– Selecting Optimal Portfolio - Select the optimal portfolio by given expected
return, risk or the Market Portfolio weighting.

– Analysis of Optimal Portfolio - Evaluate the risk, expected return or Mar-
ket Portfolio weighting of the optimal portfolio whenever one of these three
properties is known.

� Auxiliary Classes

– Interpolation - Cubic spline and general polynomial interpolation procedures
to assist in the study and manipulation of curves such as the Efficient Frontier
which are evaluated at a finite number of points.

– SolveFrontier - Solve the Efficient Frontier with respect to the risk, return, or
the investors utility function which may be given as a function of the risk or the
expected return.

– TwoAssetPortfolio - Evaluate of the optimal weighting of a portfolio with two
assets. This functionality can be used to analyze the effect of a single purchase
or sale from an arbitrary portfolio

– AssetParameters - Evaluation of the covariance matrix, expected return,
volatility, portfolio risk/variance, ARCH model for expected price.

– MaxRange - Evaluates the maximum range of the values of the expected return
for which Efficient Frontier should be considered when the historical data set
does is not consistent within the assumptions of Markowitz Theory and CAPM.

– Performance Evaluation - Offers a number of procedures for accessing the
return and risk adjusted return (Treynors Measure, Sharpes Ratio).

This product also has the following technology aspects:

� 3-in-1: .NET, COM, and XML Web services - Three DLLs, Three API Docs,
Three Sets of Client Examples all in 1 product. Offering a 1st class .NET, COM,
and XML Web service product implementation.

� Extensive Client Examples - Multiple client examples including .NET (C#, VB.NET,
C++.NET), COM and XML Web services (C#, VB.NET)

� ADO Mediator - The ADO Mediator assists the .NET developer in writing DBMS
enabled applications by transparently combining the financial and mathematical
functionality of our .NET components with the ADO.NET Database Connectivity
model.

� Compatible Containers - Visual Studio 6 (incl. Visual Basic 6, Visual C++ 6), Vi-
sual Studio .NET (incl. Visual Basic .NET, Visual C#.NET, and Visual C++.NET),
Borland’s C++ Builder (incl. C++Builder, C++BuilderX, C++ 2005), Borland
Delphi 3 - 2005, Office 97/2000/XP/2003.

2

Introduction Chapter 1

� ASP.NET Web Application Examples - We provide an ASP.NET Web Appli-
cation example which enables you to quickly test the functionality within this .NET
Service.

� ASP.NET Examples with Synthetic ADO.NET - we use a ASP.NET service to
perform component calculations on SQL database columns from a remote DBMS. We
apply a component’s function to certain rows from the database and list the output in
HTML format. This is a powerful feature since it allows you to perform calculations
in a DBMS manner without having to code the C# to SQL database transaction
yourself as it is all done by the ASP within the .NET Framework managed server
side environment.

1.2 Package Details

This .NET Service package contains the following:

� Introductory Text File (README.TXT)

� License Agreement

� Documentation in PDF Format

– Product Description

– System Requirements

– Compatibility Issues

– Deployment Guide (How to get started?)

– Mathematical Documentation

– Programmer’s Guide

– Examples

– Guide to WebCab Components

� Class Documentation

– Class Descriptions

– Methods Descriptions

� Deployment Files (DLLs)

� Examples and Related Source Code Files

� WebCab Components Brochure

3

Introduction Chapter 1

1.3 Prerequisites and Compatibility

1.3.1 System Requirements

� Microsoft Windows
r

XP/2000/2003 family

� Pentium III 500 MHz

� 64MB RAM

� .NET Framework 1.0 (or higher)

1.3.2 Compatibility

Component Type

� ASP.NET XML Web service

� .NET Class Library

� COM Component

Built Using

� Microsoft .NET Framework SDK

4

Chapter 2

Where do I Start?

Start using the Portfolio for .NET v5.0 .NET Service right away by following the few quick and
simple steps described in this chapter. If you require additional information or have problems
with the installation and use of this .NET Service then please do not hesitate to contact us via
our support forum at: http://www.webcabcomponents.com/support/index.php

2.1 What Type of User Are You?

.NET Components or XML Web Services

The prerequisite Windows operating system components you will need to have installed on
your local machine will depend on the way in which you intend to use our .NET Service.
In particular, there are two distinct deployment architectures in which our product can be
used:

� Class Library - those wishing the use our .NET Components functionality directly
within there .NET Applications. This category includes those who wish to use our
component within Microsoft’s Visual Studio .NET or Borland’s C#Builder projects,
or those who simply want to register the DLL class library onto there local machine
for consumption by local or remote applications.

� XML Web service/ASP.NET - those wishing to deploy either an ASP.NET based
Client server application and an XML Web service.

Chapter Overview

Within the remainder of this chapter we will detail how to install and configure the nec-
essary Windows components, deploy the .NET Components or XML Web Services and
finally how to run examples associated within these two deployment scenarios1.

1Later within this PDF documentation within the Programmers Guide we will cover development
techniques which can be employed for either composing larger applications or building clients for these
deployed components and Web services

5

http://www.webcabcomponents.com/support/index.php

Where do I Start? Chapter 2

The remainder of this chapter is structured in the following way, please feel free to skip
any sections which are not relevant to you:

1. Configuration - Describes how to configure the Windows deployment/development
platform for .NET based applications, including Web Services.

2. Deployment - Details the deployment of the .NET Service as a .NET Component
or as a XML Web Service.

3. Using the DLLs inside an IDE - We detail here how to import the .NET Class
Libraries DLLs into Microsoft’s Visual Studio .NET and Borland’s C# Builder.

4. Clients - Explains client examples provided with this .NET Service

5. Live Demos - Details the functionality of the Online Web Application Demos.

2.2 What Do I Need to Install and Where Can I Get

It?

In order to deploy and then use a .NET Component within your applications you are re-
quired to have (or install) the following Windows component onto your Windows operating
system:

� .NET Framework

If you wish to deploy either ASP.NET or XML Web services then you will also be required
to install:

� Microsoft’s Internet Information Server (IIS)

In order to develop .NET based applications (i.e. compile C#.NET source code) you will
also need to have the following Windows Components installed:

� .NET Framework SDK

Getting the .NET Platform

The .NET Framework’s installation package comes in the following two flavors:

� .NET Framework SDK (approx. 110MB)

� .NET Framework, Redistribution package (approx. 23MB)

Those wishing to develop applications using the .NET Framework will require the .NET
Framework and the .NET Framework SDK installed onto the development machine. Whereas
those who only wishing to deploy .NET Applications and Services will require only the
.NET Framework (also known as the .NET Framework Redistribution package). The latest
version of these packages can be downloaded from http://msdn.microsoft.com/downloads.

In order to run our ASP.NET and Web service demos you are also required to have Mi-
crosoft’s IIS Web server installed and started.

6

http://msdn.microsoft.com/downloads

Where do I Start? Chapter 2

Installing the .NET Framework

Through the Add/Remove Programs feature of the Control Panel you are able to dis-
cover which version (if any) of the .NET Framework you are currently running. If you
intend to upgrade to a later version of the .NET Framework then you are presently run-
ning then we strongly suggest that you first uninstall all previous versions of the .NET
Framework first. This is due to the fact that some applications will use the earliest in-
stalled version of the .NET Framework rather than the latest edition.

You can then proceed to install the latest version of the .NET Framework by just exe-
cuting the .NET Framework installation package by following through the dialog within
the installation program.

Remark Please note that Microsoft will ensure backward compatibility of the .NET
Framework. That is, application developed under v1.0 for example will run and behave in
a similar fashion under later releases of the .NET Framework.

2.2.1 Installing the IIS Web server

In order to deploy and run ASP.NET or XML Web services you are required to have the
relevant pieces of the “Applications Server” stack installed onto the deployment Windows
machine. The key piece of this infrastructure stack is Microsoft’s IIS Web server.

On any Windows machine you can check to see whether the IIS Web server is installed and
running by opening the following page within a web browser http://localhost. If the IIS
Web server is installed and running then you will be presented with either a placeholder
page similar to the following:

7

http://localhost

Where do I Start? Chapter 2

If you already have a web site deployed into the root directory of the IIS Web server then
the home page of this web site will be displayed.

Remark By requesting the page http://localhost, the local IIS Web server will be auto-
matically restarted if it is not already running.

Installation Process

If the IIS Web server is not installed onto your local machine then you may install it
through using the Windows Program installation tool. To access this tool select:

Settings > Control Panel > Add or Remove Programs

Now click on the button, Add\Remove Windows Components. A window should pop-
up in which a number of Windows components are listed, one of these items should read
Internet Information Services (IIS). You should select the click box for this service
and install it by clicking the Next button.

2.2.2 What Do I Need if I am Using Windows 2003?

Microsoft’s Windows 2003 is the first Windows operating system that has been designed ex-
plicitly to host .NET Applications. Though, Windows 2003 has the .NET Framework v1.1
embedded within the operating system you will still need to configure the IIS Web server
or the .NET Framework SDK if you intend to either deploy ASP.NET based Applications
or use the Windows 2003 machine to develop .NET based Applications and Services.

8

http://localhost

Where do I Start? Chapter 2

Installing the IIS Web server onto Windows 2003

The IIS Web server for the Windows 2003 operating system is not installed by default.
Therefore, if you did not explicitly request the deployment of the system component known
as ‘Application Server’ during the installation of Windows 2003. You will need to manu-
ally install this Windows 2003, component if you wish to deploy ASP.NET or XML Web
services to your local machine. For all Windows platforms the deployment process of the
IIS Web server proceeds in a similar fashion via the control panel interface.

In order to deploy the ‘Applications Server’ components first select Add/Remove Win-
dows Components from the Add/Remove Programs control panel interface.

Once the ‘Application Server’ is selected by clicking on the Details button you will be
presented with:

9

Where do I Start? Chapter 2

Remarks

� As you can see from the above screen shot by default the ASP.NET, Enable net-
work COM+ access and Internet Information Services (IIS) have been se-
lected which is sufficient for the deployment of nearly all .NET Framework based
Applications and Services.

� The Windows 2003 platform contains a thoroughly updated infrastructure stack con-
cerning the delivery of ASP.NET and XML Web services. This includes a new
ASP.NET container which is closely integrated with the IIS Web server. This update
contains several enterprise level .NET related features concerning the management
of services (automatic startup, shutdown of services and the server itself), security
(lockdown of ports and unused services), scalability (load balancing) and easier man-
agement (Component services and IIS management console). In our opinion the
Windows 2003 platform offers a significantly more robust platform than early ver-
sions of the Windows platform in which to deploy .NET Applications and Services.

2.3 Deploying the .NET Service

If you installed this product using the MSI installer then the .NET Class Libraries DLLs
should already be registered within your global assembly cache. In order to use the corre-
sponding XML Web Service implementation you will need to follow the deployment guide
below.

In case you installed using a Zip package or wish to install the .NET Class Libraries
onto another Windows machine we explain below how to manually deploy our .NET Class
Libraries.

2.3.1 Deploying a Component

Once the .NET Framework has been installed onto the deployment machine the component
(i.e. the DLL), can be deployed and registered. By registering the component it will become
available to local and remote .NET Applications and Services.

Making your components (locally) available

The easiest and quickest means to deploy the DLL component files, is to simply copy them
to one of the following two directories on your Windows machine:

� WINDOWS\System

� Application directory - the directory in which the .NET Application which will
consume the component is located.

When your Application is executed Windows will automatically look in one of these loca-
tions for the DLL file with it wishes to import.

10

Where do I Start? Chapter 2

Making the Components Globally available?

The above deployment technique is straightforward but has the restriction that is does not
allow for any custom configuration of the deployment environment which may be required
by the .NET Application which will consume the component. Moreover, such deployment
techniques do not allow the components (i.e. DLL’s) to be effectively shared between two
or more applications. In order to allow the components to be used by several applications
you must deploy the components within the Global Assembly Cache.

Remark The Global Assembly Cache within the .NET Framework plays a similar
role to that of the CLASSPATH environment variable within the Sun Java platform.

A Component can be deployed to the Global Assembly Cache in one of two ways:

� Microsoft Windows Installer 2.0 - Recommended for use on production servers.

� Global Assembly Cache tool (Gacutil.exe) - Recommended only for use on develop-
ment or test servers.

Please note, in order to use the Assembly Cache tool you are required to have the .NET
Framework SDK installed and to create a Windows installer you will need the Windows
Installer SDK v2.0. For further details concerning the Windows Installer technology we
refer the interested reader to the Visual Studio .NET documentation or the MSDN section
of Microsoft’s website.

The Global Assembly Cache Tool is run from the DOS command prompt. In order to
deploy the assembly WebCab.Libraries.PortfolioDemo.dll, contained within the present di-
rectory you must input the command:

Gacutil.exe /i WebCab.Libraries.PortfolioDemo.dll

Using the DLL within your own Applications

Within the Library directory of the installation package you will find the class library
assembly (DLL) for Portfolio. There are several ways you may choose to use this DLL
within your applications.

2.3.2 Deploying an XML Web Service

Once the .NET Framework and the IIS related infrastructure is installed the actual deploy-
ment of an ASP.NET Application or an XML Web service just involves copying a DLL file
and several ASMX files into given directories within the IIS Web server root file directory.

Installation Process

11

http://msdn.microsoft.com

Where do I Start? Chapter 2

Within the XML Web service folder within this installation package are the resources
for deploying the Web service of the Portfolio. In order to install and start using the XML
Web service functionality you will need to perform the following steps:

� Deploy the XML Web service assembly (DLL) onto your local IIS Web server. This
is accomplished by copying the contents of the ‘bin’ folder of the current directory
to the ‘bin’ folder of the local IIS root directory, which under the default installation
is C:\Inetpub\wwwroot.

� Deploy all .asmx pages inside the IIS Web server, by copying all the folders located
under the XML Web service folder located under the current directory to the IIS
root directory.

� Run the WSDL tool in order to generate all XML Web service proxies. This is done
by running the following line at the command prompt:

wsdl http://localhost/<directory name>/<XML Web service>.asmx

where <directory name> is the name of the subdirectory of the IIS root in which
the XML Web service is deployed and <XML Web service> is the name of the Web
service which you wish to generate a proxy for.

Remarks

� All generated proxies are used as described in the CHM documentation of this prod-
uct.

� If the Web service is not being locally run then the ‘localhost’ should be replaced
with the host name of the computer where the Web service is deployed and running.

� You may be using another equivalent ASP.NET Web server, in which case the above
deployment procedure may differ slightly in detail but will still involve the same basic
steps.

Testing the Deployment

You can easily test an XML Web service deployment by using any compatible web browser.
That is, to test the deployment open a compatible web browser (for example Internet Ex-
plorer) and open the following page:

http://localhost/<directory name>/<filename>.asmx

where <directory name> is the name of the subdirectory of the IIS directory root where
the Web services are located and <filename> is the name of one of the .asmx files located
inside the <directory name> folder. As soon as the browser displays the page correctly
you are sure that the corresponding XML Web service has been properly installed.

12

Where do I Start? Chapter 2

2.4 Using the DLLs inside an IDE

2.4.1 Using the DLL within a Visual Studio .NET project

If you are developing a Visual Studio .NET project and wish to use our DLLs components
functionality then you may add the DLL to the project reference. This is performed by
using the Project > Add Reference... menu item.

2.4.2 Using the DLL within a Borland’s C# Builder project

If you are developing a C#Builder project and wish to use our DLLs components function-
ality then you may deploy and then add the assembly to your project solely from within
C# Builder.

To deploy the DLL select from the menu, Component > Installed .NET Components Then
click on the ‘Select an Assembly’, to select the DLL from the file system.

Once the DLL component is deployed you may add the DLL to your C# project by right
clicking on your project within the “Project Manager” and selecting “Add reference” as
show below:

13

Where do I Start? Chapter 2

Alternatively, you could use the equivalent link with the menu, Project > Add Reference.

Now an ‘Add reference’ window will pop-up, in which you should select the assembly
you wish to add to your project and then click OK.

2.5 Client Examples

Within this section we describe the clients which have been provided with this .NET
Service. In particular, we will describe:

1. Console Client Examples

2. ASP.NET Client Examples

3. Web Service Client Examples

2.5.1 Running the Console Client Example

In order to run the console demonstration examples you must start a DOS Command
Prompt. On a Windows XP machine this can be achieved by:

START > Programs > Accessories > Command Prompt

Once the command prompt is started you should navigate to the Librares\Client sub-
directory of the installation directory2 using the cd command. The Client subdirectory
is structured into subdirectories corresponding to client examples. Every client example
should be accompanied by a compile.cmd file, which when run will compile its corre-
sponding client. After compilation, the only thing left to do is launch into execution the
generated executable file(s).

For further technical details you should read the README.TXT files located inside
the Client subdirectories.

2Usually C:\Program Files\WebCab Components\Portfolio.

14

Where do I Start? Chapter 2

2.5.2 ASP.NET Client Example

Within the \NET Libraries\ASP.NET Examples, folder of this package we have pro-
vided a set of tailor made ASP.NET examples for the WebCab Portfolio for .NET v5.0
.NET Service.

In order to start using these ASP.NET examples, please go through the following steps:

1. Deploy the ASP.NET Pages and Resources

(a) Copy the contents of the ‘Portfolio ASP.NET Examples’ folder located in the
current directory to a location under your IIS (or another compatible ASP.NET
web server) root directory. This is usually ‘C:\Inetpub\wwwroot’ or a similar
path with a different drive letter.

(b) Secondly, copy the contents of the ‘bin’ subfolder of the current directory to the
‘bin’ subfolder of your IIS root directory. If the ‘bin’ directory does not exist
inside the IIS root directory, you will be required to create it.

2. Run the ASP.NET Examples

(a) Open an Internet browser3 and type in the following address:

http://localhost/Portfolio ASP.NET Examples/index.html

In case you chose to copy the ‘Portfolio ASP.NET Examples’ directory to a
subdirectory of your IIS root directory, you will need to include the full path to
it inside the above URL. Also, if you have deployed these ASP.NET examples
to another .NET machine, you should replace ‘localhost’ with the name of that
machine.

Remark An online version of these ASP.NET examples can be found at:

webcabcomponents.com/dotNET

Using the Example

Further explanation regarding the use of this example can be found within the ‘Accessing
the Online Demo’, section of this guide which details the use of the online version of this
ASP.NET example.

2.5.3 XML Web service examples

Within the directory \XML Web Services\Client\, you will find C# application client
examples which make use of the financial and mathematical functionality provided by the
XML Web services implementation of the WebCab Portfolio .NET Service.

3E.g. Internet Explorer, Opera, Mozilla.

15

http://www.webcabcomponents.com/dotNET

Where do I Start? Chapter 2

Remark In order to run and access the Web service examples it is necessary to have
the IIS web server and a compatible internet browser (for example Internet Explorer 5 or
higher) installed onto your local machine.

Please go through the following steps in order to test these client examples:

1. Before running or even compiling these XML Web service client examples you will
have to deploy all Portfolio XML Web services located one directory level above to
your local IIS server or an IIS server your machine can connect to. This is accom-
plished by copying the contents of the ‘bin’ folder, located one level above in the direc-
tory structure, to the ‘bin’ folder of the IIS root directory, usually C:\Inetpubwwwroot.
You will also need to copy the ‘PortfolioDemo’ folder to the IIS root directory.

2. Browse through each subfolder of the current directory and locate every ‘compile.cmd’
compilation script file. There is one compilation script for every client example. Every
client example requires certain XML Web services to connect to, which you may
determine by running the compilation script. The reported errors should correspond
to the XML Web services the client example requires.

3. Run the WSDL tool in order to generate XML Web service proxies for every XML
Web service required by each client example. This is done by running the following
line at command prompt:

wsdl http://localhost/PortfolioDemo/<XMLWebservice>.asmx

where <XMLWebservice> is the name of the required XML Web service and ‘localhost’
should is the host name of the computer where the IIS server is running, in case it’s
not this machine.

Make sure you are running this command from directory containing the compila-
tion script.

4. Run the ‘compile.cmd’ compilation script file again. If the right XML Web service
proxies have been generated for its client examples, the compilation script will com-
pile all source code files and generate a .NET executable file (.exe). If the script still
results in an error, please go through the previous step again, making sure you gener-
ate the XML Web service proxy classes required by the client example corresponding
to this compilation script.

5. Run the generated executable files. Running the executable files will allow you to
test the client examples.

You may compile the client examples (after having generated the XML Web service prox-
ies) and run their executable files as you go through each subfolder, since every client
example is independent of each other.

16

Where do I Start? Chapter 2

If you wish to customize a particular client example after having run it, please feel free to
adapt its source code files accordingly and run the compilation script again. Note that you
will not need to regenerate the XML Web service proxy classes.

2.6 Testing the Component

2.6.1 Accessing the Online ASP.NET Demo

By far the easiest way to test the functionality of this .NET Service is to view the on-
line demo. The online demo can be accessed from our .NET Homepage by clicking the
‘[ASP.NET]’ link corresponding to this Application. Once you click on the link the follow-
ing pop-up Window will appear:

Fig: Interface of the ASP.NET online Web Application

Compatible Web Containers

This demo runs inside an online web container and demonstrates the ASP.NET technology.
The demo can be accessed through a web browser and is compatible with Internet Explorer
5, Netscape Navigator 4, Netscape 6, Opera 5 and higher.

17

http://www.webcabcomponents.com/dotNET/index.shtml

Where do I Start? Chapter 2

Selecting a method to test

After clicking on the ‘[ASP.NET]’ link for this application from our home page the Web
demo will launch within a new browser window. To order to select a method from this
application use the drop-down menu on the left hand side of the screen to navigate through
all implemented functions. The menu lists all the components on the first level and their
corresponding functions on the second and third level. Click on the plus icon in order to
expand the component menu and then click a function item to select it.

Inputting data

The selected function will be displayed on the right hand panel of the new window accom-
panied by its description and parameter characterization. Once the nature of the method is
clear you may test the method by inputting the parameters within the text boxes provided
or associating a database table field using our database management tool.

Running the demo using text boxes

Please input the value of each parameters in to the corresponding text box while paying
attention to each parameter description. When all the parameters has been input, press
the “Get Result” button on the right-hand side and towards the bottom of the screen in
order to request the solution from the server-side component. If by chance any parameters
are out of range you will be prompted to enter a correct value before proceeding.

2.6.2 Online XML Web service examples

The XML Web Services contained within this package have also been deployed online. The
Web service demo is accessed through our .NET Homepage by clicking on the ‘[WSDL]’
link corresponding to this Service. Once you click on the link the following pop-up Window
will appear:

18

http://www.webcabcomponents.com/dotNET

Where do I Start? Chapter 2

Fig: Interface of the Online Web Services

Remark In order to view the online demos you will require a compatible internet browser
(for example Internet Explorer 5 or higher) with JavaScript enabled.

2.6.3 Using .NET Web Service Studio

You may wish to test the functionality of our XML Web services by using one of Mi-
crosoft’s .NET tools made for testing XML Web services, .NET Web Service Studio
2.0. A link to where you can directly download this tool is available on our online
web site at webcabcomponents.com/dotNET. Download and unzip the pack and run the
WebServiceStudio\build.bat file. In order to start up the tool double-click the generated
WebServiceStudio.exe .NET executable file.

Deciding on an XML Web service

Click here in order to open the .NET Homepage of our web site. At the bottom of the
page you will notice a list of Online .NET Web Services with their corresponding ASP.NET
Example page and their WSDL description page links. Click on the WSDL link next to
:fullnamewithoutdotnet:. Move your mouse pointer above the left hand SIDE MENU and
click on an XML Web service name.

19

http://www.webcabcomponents.com/dotNET
http://www.webcabcomponents.com/dotNET

Where do I Start? Chapter 2

A new browser window will open and present you with the default IIS 6.0 ASP.NET
XML Web service page. Inside the ‘Address’ bar of your browser you will be able to see
the fully qualified URL to the online WSDL for the corresponding XML Web service.

Connecting to an XML Web service

Copy from your browser’s Address bar the WSDL URL to the XML Web service you have
chosen to test and paste it into the WSDL EndPoint text field inside WebService Studio.
Click the Get button next to this text field and wait for the tool to establish a connection
to the XML Web service.

As soon as the connection has been established, you can start going through every available
webmethod our XML Web service has to offer by clicking on the items in the left hand side
of the tool’s window. After clicking a web method’s name, look inside the Input panel for
required parameters. You may recognize these parameters from the available API CHM
documentation we have included inside this package4.

Sending in Web Method Parameters

Inside the Body tree of the Input panel you may click on every parameter type and then
set its value inside the Value panel to its right. This is accomplished by editing the right
side of the Value column in the right hand side Value panel.

If you are dealing with parameters of an array type (say a Double[] array), you will first
set its Length in the Value panel and then go through every of its tree children inside the
Input panel and set their Value field back into the Value panel. The following two screen
shots explain this process.

WebService Studio: Setting the Length of a Double Array to 4

4Browse the API Reference by double-clicking the CHM file located inside the Documentation direc-
tory of this Package.

20

Where do I Start? Chapter 2

WebService Studio: Setting the Value of its First Element to 12

Invoking a Web Method

After having sent in the right parameter values5 click the Invoke button right below the
Value panel on the right hand side of the window.

The Output panel below the Input panel will present you with the results of invoking
the corresponding Web Method of our online XML Web service over the Internet.

5You should refer to the corresponding API HTML Help documentation even when running this test
tool. You could however send in some arbitrary values just to try out some of our simpler Web Methods.

21

Chapter 3

Mathematical Documentation

Within this .NET Service we offer a through and flexible implementation of a number of
ideas mainly concerned with the selection and analysis of the optimal portfolio in accor-
dance with the assumptions of Portfolio Theory. Portfolio Theory, in general, deals with
the interrelation between risk1 and return2 for Portfolios constructed from a given collec-
tion of assets. In particular, within our component we allow the user to apply Markowitz
Theory and the Capital Asset Pricing Model (CAPM). Within this chapter of the PDF
documentation we describe the theoretical content and application of these theories.

3.1 Assumptions, Questions, Functionality and Prob-

lems

The construction of Markowitz Theory and the Capital Asset Pricing Model (CAPM) is
based upon a number of assumptions concerning the investment market, the behavior of
the participants in these markets and the assets from which the investor’s portfolio can be
constructed.

3.1.1 Assumptions of Markowitz Theory

The assumptions underlying Markowitz Theory from which the model in derived is as
follows:

1. Investors seek to maximize the expected return of total wealth.

2. All investors have the same expected single period investment horizon.

3. All investors are risk-adverse, that is they will only accept greater risk if they are
compensated with a higher expected return.

1Risk is also know as volatility; it is a measure that determines the degree to which an asset’s return
(or sometimes price) fluctuates.

2The return of an asset is the absolute or relative (i.e. percentage) change of the price of an asset.

22

Mathematical Documentation Chapter 3

4. Investors base their investment decisions on the expected return and risk (i.e. the
standard deviation of an assets historical returns).

5. All markets are perfectly efficient (e.g. no taxes and no transaction costs).

3.1.2 Assumptions of Capital Asset Pricing Model (CAPM)

The CAPM is an extension of the Markowitz Theory and hence requires all of its assump-
tions. The addition to these assumptions it also requires that the investor is able to lend
or borrow (risk free) cash from the market in order to leverage or un-leverage a portfolio.
In particular, we require the following provisions:

1. Lend excess capital at the Market Rate: The investor may lend money at the
prevailing market rate. This constitutes the ability to hold within the portfolio a
risk free asset which will provide the prevailing return available on cash. In practice,
such assets are often referred to as a money market accounts and will yield a return
in the region of LIBOR.

2. Borrow capital at the Market Rate: The investor may borrow money from the
market at the prevailing market rate in order to invest within (risky) assets. This
will increase the expected return of the original capital base and also increase its
risk. In practice, the rate at which money can be lent from the market by a fund will
be in the region of LIBOR (at least if the fund structures the loan as a REPO type
agreement).

Remark The rate of which money can be borrowed or lend from or to the market is the
same.

3.1.3 What problems do these Models address

Though it may not be obvious from the assumptions of these models, using the theories
based upon these assumptions, we are able to select the optimal portfolio which balances the
risk/reward profile in accordance with the investor’s risk tolerance or reward requirements.
The principle questions which we are able to address within each of the models are as
follows:

� Markowitz Theory - Allows the optimal portfolio constructed from a collection of
assets to be selected when the risk, expected return or the investor’s utility function
is known.

1. What is the portfolio that can be constructed from a given set of assets which
has the lowest risk for a given value of the expected return? (See the Portfo-
lio.Markowitz.efficientFrontier(double, int) and Portfolio.Markowitz.efficientFrontier(
double, double[][], double[], double) methods from the Markowitz class).

23

Mathematical Documentation Chapter 3

2. What is the portfolio which can be constructed from a given set of assets that has
the greatest expected return for a given value of the total risk? (See the Portfo-
lio.SolveFrontier class and in particular the methods Portfolio.SolveFrontier.findReturn(
double, double[], double[]) and Portfolio.SolveFrontier.findReturn(double[], dou-
ble[], double[], double[], double) of that class)

3. What is the portfolio(s) that can be constructed from a given set of assets which
is optimal with respect to the investor’s risk/reward utility function? (See the
Portfolio.Markowitz.optimalPortfolio and Portfolio.Markowitz.optimalPortfolioMaxExpected
methods from the Markowitz class).

� Capital Asset Pricing Model (CAPM) - Allows the optimal portfolio con-
structed from a collection of assets with the option of either lending or borrowing
cash, to be selected when the risk, expected return, weighting of the Market Portfolio
are known.

1. What is the portfolio which can be constructed from a given set of assets
with the option of borrowing or lending cash at the prevailing market rate,
such that the total risk is minimized for a given value of the expected re-
turn? (See Portfolio.CapitalMarket.weightCML to construct the optimal port-
folio and Portfolio.CapitalMarket.riskCML to evaluate its total risk from the
Portfolio.CapitalMarket class).

2. What is the portfolio that can be constructed from a given set of assets with
the option of borrowing or lending cash at the prevailing market rate, such that
expected return is maximized for a given value of the total risk? (See Portfo-
lio.CapitalMarket.returnCML to evaluate associated expected return and then
Portfolio.CapitalMarket.weightCML to construct the optimal portfolio from the
Portfolio.CapitalMarket class).

3. What is the weighting of the Market Portfolio (i.e. non-cash part) within the
optimal portfolio given by its expected return when the portfolio can be con-
structed from a given set of assets with the option of borrowing or lending
cash at the prevailing market rate? (See Portfolio.CapitalMarket.weightCML
in order to evaluate the weighting and then Portfolio.CapitalMarket.riskCML
to evaluate its risk from the Portfolio.CapitalMarket class).

3.1.4 Range of Functionality contained within the classes

This Component contains the following business classes:

� Portfolio.AssetParameters - Auxiliary class that offers methods to assist in the eval-
uation and estimation of various parameters which are then used within the methods
of the main classes.

� Portfolio.CapitalMarket - Implements the Capital Asset Pricing Model (CAPM).
The CAPM is an extension of the Markowitz theory in that in the construction of an

24

Mathematical Documentation Chapter 3

optimal portfolio along with (risky) assets you may borrow or lend (zero risk) cash
at the prevailing market rate.

� Portfolio.Interpolation - Offers methods by which the Efficient Frontier can be con-
structed from a finite set of points.

� Portfolio.Markowitz - Implements the Markowitz model, that is, we offer method
that allow the portfolio with the least return to be constructed from a collection of
assets.

� Portfolio.PerformanceEvaluation - Offers a number of procedures for accessing the
return and risk adjusted return (Treynors Measure, Sharpes Ratio).

� Portfolio.SolveFrontier - This class complements the methods found within the Markowitz
class which allow you to find for a given expected return the corresponded portfolio
on the Efficient Frontier. Here we also allow yo to provide the value of the total risk
and we will find the corresponding values of the expected return of the portfolio on
the efficient frontier.

� Portfolio.TwoAssetPortfolio - Evaluation of the optimal weighting of a portfolio with
two assets which can be used to analysis the effect of a single purchase or sale from
an arbitrary portfolio.

� Portfolio.Volatility - Auxiliary class that offers methods to assist in the evaluation of
the volatility, variance and covariance of the assets.

3.1.5 Problems with the Application of the Markowitz Theory
and CAPM

When applying the Markowitz Theory and CAPM to real world problems concerning the
construction of portfolios, we will in general be faced with the following difficulties.

Estimation of the Parameters

Problem: To apply any of these models we require knowledge of the expectation and
variance of the return for every available investment and the covariance between every pair
of investments. This information in practice is not obtainable. To get around this we use
the historical rates as estimates, the idea being that in the near term at least, the rates
will not vary significantly from there historical rates.

Our Approach: Within our Component we have offered a number of utility classes which
assist in the evaluation and estimation of these quantities. The major of these auxiliary
methods will be found within the Portfolio.AssetParameters class. With this class we offer
methods for the estimation of the expected returns, variance and covariance in accordance
with a historical and scenario based approach.

25

Mathematical Documentation Chapter 3

Scaling as the Number of Assets considered increases

Problem: Both the Markowitz Theory and CAPM application becomes computationally
unyielding when a large number of investments are considered. For instance, on a typical
desktop machine when 1 or 2 hundred assets are used then the application of these models
will take a number of minutes; however if thousands of assets are used then the application
of the model will take hours or even days.

Our Approach: Both the Markowitz and CAPM require the maximum of a given function
to be determined. This requires that a low level multi-dimensional optimization algorithm
is applied. These algorithms by there very are computational intension and hence the
computational intensity of the application of the Markowitz and the CAPM cannot to
completely avoided. However, we have mitigated the computational requirements of the
application of this Component by:

1. Refined Algorithm - The optimization algorithm used here is an adapted version
of Rosen’s Algorithm that has been optimized to handle the particular optimization
problems which are generated from the Markowitz Theory and CAPM. This custom
algorithm was developed from the basis of our experience and developed algorithms
found within the WebCab Optimization Component.

2. This Components Design - The Component is designed so that the Efficient Fron-
tier and the Market Portfolio are constructed at a finite number of points after which
the interpolation methods are applied. By designing the Component in this way you
are able to call the optimization algorithms maybe 5 or 10 times in order to be able
to construct the optimal portfolio for a wide range of possible values of the risk,
expected return or Investors risk/rewards preferences.

Moreover, the Component is actually designed so that the computation of the Effi-
cient Frontier and the Market Portfolio which depend on the optimization algorithms
can be completed at the beginning of the application of these models, and these al-
gorithms will not need to be used during the subsequent application of the models.
Therefore, within real life situations the closing prices and other market data can be
collected from which the Efficient Frontier and Market Portfolio can be constructed
using an over-night batch process. Once these objects have been constructed the ap-
plication of the Markowitz and CAPM even for portfolios which can be constructed
from 1,000’s of assets can be carried out using a desktop machine in essentially real
time.

Determining the Risk/Reward preferences of the Investor

Problem: Within the application of the Markowitz Theory when selecting the optimal
portfolio with respect the Investor’s risk tolerance it is necessary to provide the Investors
Utility function which describes there riskpreferences. This Utility function allows a unique
portfolio to be selected from the collection of portfolios which offer the least risk for a given

26

Mathematical Documentation Chapter 3

expected return. The difficulty here like with other non-observable quantities is in our abil-
ity to estimate this function from information which is provided by the investor.

Our Approach: The difficulty in obtaining the Investors Utility Function is in providing
a framework which is both comprehensive and user friendly. Ideally, the Investors would
be in a position to submit a function (in analytic form or otherwise) which relates the risk
and expected return in accordance with his preferences. However, this requirement and re-
sulting construction of the Utility function if not sufficiently intuitive in order to be widely
applied. The approach we have taken here is to allow the Investor to given his risk/reward
preferences at a finite number of sweet stops around which we will interpolate in order to
obtain the Utility function itself. Clearly, one of the assumptions we are forced to make
in this approach is that the Utility function is smoothly varying between the interpolation
points given.

Remark The interval between and the location of the interpolation points should re-
flect nature of the investors preferences. In particular, in regions where the cubic spline
interpolation function is likely to differ most from the (true) Utility function more inter-
polation points should be requested from the investor.

For further details concerning the application of this (and other) approaches please see
the section ‘Discovering the Investors risk - return profile’).

Practicalities of Diversification

Problem: Though this problem is not particular to our (or others) implementations it
is important to point out that in practice costs will be incurred when an asset is brought
or sold, and the effects of diversification (in accordance with the Markowitz Theory and
CAPM) will diminish as the number of assets considered within the collection of asset
increases. Therefore in practice one should balance the benefits of diversification with the
costs incurred in re-balancing a portfolio.

Solution: The level of costs will vary according to the type and quantity of assets being
held within the portfolio. Generally speaking the more liquid the asset the lower the rel-
ative transaction costs will be for a given transaction size. Moreover, several studies have
shown that it is possible to derive most of the benefits of diversification with a portfolio
consisting of 12 to 18 holdings. That is, to be adequately diversified does not require 200
holdings in a portfolio which could incur significant trading costs.

Another approach to deducing the effects of trading costs is to use derivatives on the
underlying assets rather than the assets themselves in order to re-balance the portfolios.
The reason being that derivatives trading generally has significantly lower costs than trad-
ing in the underlying security.

27

Mathematical Documentation Chapter 3

3.2 Preliminaries and Auxiliary classes

Within this section we detail a number of auxiliary notions and the procedures that will
be required by the main functionality offered by this Component.

Within the Portfolio.AssetParameters class we provide procedures for the evaluation of
various quantities which are required within the application of this Component. These
parameters include:

� Estimate of the Volatility of an asset prices:

1. Historical Approach: Portfolio.AssetParameters.volatility(double[])

2. Scenario Approach: Portfolio.AssetParameters.volatility(double[], double[])

� Estimate Expected Return of an asset:

1. Historical Approach: Portfolio.AssetParameters.expectedReturn(double[])

2. Scenario Approach: Portfolio.AssetParameters.expectedReturn(double[], dou-
ble[])

3. ARCH based Approach: Portfolio.AssetParameters.archExpectedPriceEstimate

� Estimate Covariance Matrix of the collection assets:

1. Historical Approach: Portfolio.AssetParameters.covarianceMatrix(double[][])

2. Scenario Approach: Portfolio.AssetParameters.covarianceMatrix(double[], dou-
ble[][])

Note Further methods for the estimation of the Volatility are provided within the Port-
folio.Volatility class.

3.2.1 Choices in Approach and other issues

As listed about the main two approaches by which the expected return, volatility and
covariance are estimates is the historical and scenarios based approaches. Here we motivate
the essential differences between these methods. We also give a brief explanation of the
ARCH procedure for the estimation of the expected returns along with advice concerning
the number of historical values which should be used within the application of the historical
estimate.

When should the scenario approach be used?

One such instance is when a takeover of a quoted company has been announced and
the share price converges to almost the offer price in anticipation of the takeover being
completed. In this scenario the more likely the takeover will be completed the closer the
price will converge to the offer price. However, if the takeover breaks down then the price
is likely to experience sharp moves to the price level found prior to the intended takeover

28

Mathematical Documentation Chapter 3

being announced. By estimating the probability of each scenario and the likely level of
volatility resulting we are able to give a realistic forward looking estimate.

When should the historical approach be used?

If the market under consideration goes through seasonal or business cycles, or if a given
company has transformed itself then the observations used in order to estimate the expected
volatility should reflect these issues. For example, if company which was a diversified
general industrial company has since refocused on certain key areas, then in terms of
estimating its expected volatility from historical values it is reasonable to only consider
the period after the company refocused.

The number of historical values which should be used

The number of historical values used here in order to estimate the volatility should reflect
the length of the period over which a reliable estimate of the volatility is required. For
example, if an estimate of the 1-month volatility is sought then it is reasonable to use at
least the last 1-month’s historical values up to a few years of historical values.

ARCH type models for Estimate Returns and Volatility

The ARCH model in the general sense can be thought of as a (linear) weighted scheme.
Here we allow the past historical asset prices to have a weighted effect, along with a
weighted measurement of the expected value in accordance with the assets characteristic
line. Note, that when we set all the weights of the historical values to zero this estimate
reduces to an estimate based on extrapolation of the characteristic line.

When to use the ARCH approach

This method assumes that the asset under consideration exhibits a long term drift (in
particular, linear correlation) with respect to some market index. Therefore, this estimate
is particularly applicable to assets which have been observed to exhibit significant linear
correlation to market indexes such as the FT100, S&P500 etc.

3.2.2 Basic Formulae for the Return, Covariance, Correlation
and Risk

Within this subsection we collect together a number of formulae which illustrate how the
scenario and the historical approach can be used in order to either define or investigate
relationships between the return, covariance, correlation or risk of a portfolio and its assets.

Definition of the Return of a Portfolio

Before we move onto the Markowitz Theory we should define exactly what we mean by the
return of a portfolio. The return of a portfolio over a given period is simply the weighted

29

Mathematical Documentation Chapter 3

arithmetic average of the returns of the individual assets. That is, the return rp of a
portfolio over t periods is given by:

rp =
N∑

i=1

xiri(t) (3.2.1)

where xi is the weight for the asset i and ri(t) is the return on the asset i over the t periods.
Note that by definition the weights xi, for any portfolio must add up to 1, i.e.

∑N
i=1 xi = 1.

Remark Note that this definition depends on knowledge in the returns of the individual
assets. Therefore, if we use the forwarding looking scenario based approach to estimat-
ing the return of the asset then the above formulae will evaluate the forwarding looking
(expected) value of the (expected) return of the portfolio. Similarly, if we had evaluated
the historical returns using historical values then the above formulae would refer to the
evaluation of the historical value of the return of the portfolio.

Evaluating the Covariance of Returns (Scenario Approach)

The covariance of returns is a statistical measure of how the returns of two assets are
correlated. That is, to what degree do they move together. (In the following section we
offer more motivation and show how the covariance and correlation are connected).

Using the forward looking scenario approach the covariance of returns σij, between two
assets i and j is given by:

σij =
N∑

s=1

Ps[ris − E(ri)][rjs − E(rj)] (3.2.2)

where,

� ris (respectively rjs) denotes the rate of return for the asset i (respectively j) in the
state s

� E(ri) (respectively E(rj)) is the expected return for the asset i (respectively j)

� Ps is the probability of the state s occurring

Our Implementation: An approach to estimating all the covariances between all the
pairs of a collection of asset (i.e. the covariance matrix has been implemented within the
method Portfolio.AssetParameters.covarianceMatrix(double[], double[][]).

Correlation, Covariance and the Volatility (aka standard deviation)

Though knowledge of the Correlation is not directly used within the full application3 of
the Markowitz and CAPM, the notion does play an important role. The principle reason

3In the case of a portfolio with two assets some of the results are phrased in terms of the correlation.

30

Mathematical Documentation Chapter 3

being that the effects of ‘diversification’ (explained below) which Portfolio Theory uses can
be influenced by the level of correlation between the assets from which the portfolios can
be constructed. In particular, from the perspective of the Portfolio Theory if two assets
are perfectly correlated then one would expect them to have the same level of expected
return since otherwise the asset with the lower expected return could be excluded from the
collection of assets. Below we further illustrate these points by giving the primary relation
between the Correlation, covariance and standard deviation (or volatility).

The correlation coefficient ρij is another measure of the relationship between two assets i
and j. The correlation coefficient is a measure which lies within the closed interval [−1, 1],
where a value of −1 which depicts that the assets are perfectly negatively correlation mean-
ing that their prices always move in opposite directions and 1 which depicts that the assets
are perfectly positively correlated, meaning that their prices always move in the same di-
rection.

The Correlation, covariance and Volatility (also know as the standard deviation) are related
by the following equation:

ρij =
σij

σiσj

(3.2.3)

where σi and σj is the standard deviations of the returns of the assets i and j, and σij is
the covariance of the returns between the assets i and j.

Scenario Approach to the Correlation Coefficient and the Covariance

Since the covariance is given by (3.2.2), it only remains to find the two standard deviations
(or volatility) σi and σj, in order to evaluate (3.2.3). The standard deviation of an asset is
given by the following equation:

σ =

√√√√ N∑
t=1

Pt[rt − E(r)]2 (3.2.4)

where Pt is the probability of the t-th state occurring, rt denotes the historical average
return when the t-th state occurs and E(r) is the expected (future) return of the asset.

Remark If we are considering only two assets A and B then a computationally effi-
cient way to calculate the correlation coefficient between A and B over N periods is by
using the following expression:

σij =
N

∑N
t=1 AtBt −

∑N
t=1 At

∑N
t=1 Bt√[

(N
∑N

t=1 A2
t)− (

∑N
t=1 At)2

] [
(N

∑N
t=1 Bt)2

] (3.2.5)

where At (respectively Bt) is the percentage increase of the asset A (respectively B) in the
tth period.

31

Mathematical Documentation Chapter 3

Evaluating the Expected Return(s) (Scenario Approach)

The following expression is often used to define (average) expected return E(r) of an asset
over some (future) time period:

E(r) =
N∑

s=1

Psrs (3.2.6)

where Ps is the probability of the state s occurring and rs is the corresponding expected
return of that given state.

Our Implementation: Such an approach has been implemented within AssetParam-
eters.expectedReturn(double[], double[]).

Covariance of the Expected Return (Historical Approach)

Similarly, we may use an historical approach in order to estimate the covariance between
the expected return of assets. That is, if we know the historical rates of return then the
covariance is given by the expression:

σij =
1

N

N∑
t=1

(rit − r̄i)(rjt − r̄j) (3.2.7)

where,

� N is the number of equally likely paired observations

� rit (respectively rjt) is the return of the asset i (respectively j) in the tth period

� r̄i (respectively r̄j) is the historical average return for the asset i (respectively j)

Our Implementation: The allow the covariance to be evaluated/estimated uses a sce-
nario or historical approach within Portfolio.AssetParameters.covariance(double[], dou-
ble[], double[]), or Portfolio.AssetParameters.covariance(double[], double[]) respectively.
The evaluation of the covariance is only required when portfolio with only two assets
are required. For portfolio with more than two assets you will be required to eval-
uate the covariance matrix of the collection of assets from which the portfolio can be
constructed. Within the Portfolio.AssetParameters class we provide the methods Portfo-
lio.AssetParameters.covarianceMatrix(double[][]), and Portfolio.AssetParameters.covariance(double[],
double[][]), which allow the covariance matrix to be evaluated via historical or a scenario
based approach respectively.

Variance and Expected Return of a Portfolio with n holdings

We give the general formula for the variance σ2(rp), of the returns for a portfolio of N
assets:

var(rp) =
N∑

i=1

N∑
j=1

xixjσij (3.2.8)

32

Mathematical Documentation Chapter 3

where xi and xj are the weights for the assets i and j, σii is the variance for the ith asset,
σij is the covariance of the assets i and j.

Remark The standard deviation of the portfolio σp, is always the square root of the
variance (i.e. σp =

√
var(rp)).

The expected return E(rp), is given by:

E(rp) =
n∑

i=1

xiE(ri) (3.2.9)

where E(ri) is the expected return of the ith asset and xi is the proportion of the portfolios
value invested in the ith asset.

Remarks

� If we hold a positive quantity of the asset i (i.e. go long) then clearly xi > 0. We are
able to model going short on an asset i, by letting xi < 0. Therefore, if we set xi ≥ 0
then no short selling is allowed.

� For a portfolio with a large number of holdings the covariance terms will dominate
the variance terms. Hence, the risk of the portfolio will depend more on the average
covariance between the investments than on the risk of the investments themselves.

3.3 Expected Return and Risk from a Portfolio with

two Assets

In the preceding discussion we have been setting up the language in which to express
Portfolio Theory. Here we will start our discussion of Portfolio Theory itself. In particular,
we will discuss formulae which detail the interaction between the risk and return of a
portfolio and how it can be constructed to ensure the minimal risk. Here we will deal with
the special case of portfolios which consist of two assets.

3.3.1 Motivation

This case is particularly useful because the relevant formulae take a simple form and we
are able to calculate the effect of a single purchase (or sale) has to a portfolio by viewing
the portfolio (or portfolio minus a holding) itself as a single asset.

In the case of portfolios with only two assets, evaluation of the portfolio risk, expected
return and weights for the portfolio with the minimal risk are all closed formulae. As men-
tioned above the usefulness of these closed formulae is that the effect of a single purchase
(or sale) has to a portfolios risk/reward profile can be studied by viewing the portfolio
(or portfolio minus a holding) itself as a single asset. Note that this portfolio which is

33

Mathematical Documentation Chapter 3

viewed as a single asset could however have been constructed by use of the Markowitz (see
Portfolio.Markowitz class) or CAPM (see Portfolio.CapitalMarket class) Theories.

3.3.2 Formulation for a Portfolio of two assets

If we can construct portfolios from two assets A and B, then the return of the general
portfolio P , will take the form:

P = αA + (1− α)B

where {α : 0 ≤ α ≤ 1}, determines the weighting of the portfolio between the two assets
A and B.

If the corresponding expected returns of the two asset from which portfolio can be
construct are E(A) and E(B), then the expected return of the general portfolio E(P) is:

E(P) = αE(A) + (1− α)E(B) (3.3.10)

with a standard deviation of:

σp =
√

α2σ2
A + (1− α)2σ2

B + 2α(1− α)σAB (3.3.11)

By using the identity (3.2.3), σAB = σAσBρAB, we can rewrite (3.3.11) as:

σ2
p = α2σ2

A + (1− α)2σ2
B + 2α(1− α)σAσBρAB (3.3.12)

3.3.3 Minimum risk of a portfolio with two assets

By a simple application of calculus the portfolio with the minimum risk for some corre-
sponding value of the expected return occurs when the weighting of the asset A (α) is equal
to:

α =
σ2

B − ρABσAσB

σ2
A + σ2

B − 2ρABσAσB

where α is the percentage (in decimal format) invested in asset A within the two asset
portfolio. Hence the percentage invested in the other asset B is (1− α).

Please note that the weights given above are not assumed to lie within the interval [0, 1],
and in fact can be any real number. If the weight of the first asset is greater than one, say
w, then it means that the portfolio with the minimal risk which can be constructed from
the two assets consists of a leveraged position in the first asset which is funded by going
short in the second asset (i.e. with a weight 1 − w). Similarly, if the weight of the first
asset is negative then the portfolio with the minimal risk consists of a short position in the
first asset and a geared position in the second.

Remark Please note that often in practice it is necessary to provide margin for short

34

Mathematical Documentation Chapter 3

positions and hence in practice the portfolio with the minimal risk which contains a short
position may require extra capital.

In particular, for the special cases when the assets are uncorrelated (i.e. knowledge of
the movement of one asset either up or down does not imply anything concerning the
movement of the other) and perfectly negatively correlated (i.e. the assets always move of
opposite directions)we have:

� A and B are uncorrelated (i.e. σAB = 0) is given by:

α =
σ2

B

σ2
A + σ2

B

(3.3.13)

� A and B are perfectly negatively correlated (i.e. σAB = −1) is given when:

α =
σB

σA + σB

(3.3.14)

Concluding Remarks: Above we have constructed the portfolio under various conditions
which exhibits the minimal risk. However, often an investor will wish to balance the risk
against the return which is the main question we will consider the following sections.

3.4 Markowitz Theory

The Markowitz Model is used to analyze the construction and qualitative nature of a port-
folio’s risk-return characteristics. In particular, we offer methods by which the continuum
(in risk and expected return) of the portfolios (known as the Efficient Frontier) which
consists of the portfolios with the minimum risk for a given value of the expected return
constructed from a given collection of assets. Moreover, from this collection of Portfolios
a unique optimal portfolio can be selected with respect to a given value of the expected
return, risk or an investors risk - return profile given in terms of a utility function.

3.4.1 Overview of Markowitz Theory Implemented

The Efficient Frontier is the collection of portfolios constructed from the given set of assets
which have the lowest possible risk for a given level of the expected return. Note that the
weights of the assets making up the portfolio may themselves be subject to constraints (for
example, no one asset can have a weighting more than 20 percent or less the 5 percent)
which we will deal with below.

Once the Efficient Frontier is known, we are able to select from this continuum a unique
portfolio which represent the optimal portfolio with respect to an investors risk - return
profile. The return profile of the investor may be given in three distinct ways and the
correspond optimal portfolio can them be constructed. The by one of the following means:

35

Mathematical Documentation Chapter 3

1. With respect to the investors risk - reward utility function, see Portfolio.Markowitz.setUtilityFunctionInterp,
Portfolio.Markowitz.setUtilityFunctionPoly.

2. Maximum Risk - the investor gives the (maximum) risk which they are prepared to
accept and then the corresponding portfolio with the highest expected return for that
given level of risk is constructed.

3. Expected Return - the investor gives the expected return which they desire and the
portfolio with the least risk for that given level of expected return is constructed.

3.4.2 Construction of the Efficient Frontier

For a given collection of securities with various risk profiles, an investor can construct a
whole range of portfolios with various risk-return characteristics. In particular, there ex-
ists a continuous family of portfolios within the range of the risk and expectation of the
individual securities. The investor will wish to choose a portfolio from this family which
offers the lowest level of risk for a given expected return, according to the assumptions of
the Markowitz model.

We consider the family of all possible portfolios formed from a combination of the available
securities. Within this family we choose a locus of points by selecting the portfolios which
offer the least risk for a given level of the expected return. Such optimal portfolios will
exist within the range of the expected returns. This locus of points is referred to as the
Efficient Frontier.

The Efficient Frontier is constructed by the following steps:

1. Evaluated the Efficient Frontier at a finite number of points. That is, find the port-
folio which exhibits the lowest risk for a given expected return.

2. Interpolate about these points using cubic spline (or some other method) in order to
construct the Efficient Frontier.

The points on the Efficient Frontier are portfolios constructed from the set of assets consid-
ered which exhibit the lowest risk for a given expected return. These portfolio are described
by the following three properties:

1. Expected Return - The expected return of the portfolio which is estimated from the
historical returns of the assets within the portfolio.

2. Total Risk - The total risk of the portfolio which is estimated from the historical
returns of the assets within the portfolio.

3. Asset Weights - the weights of the collection of assets from which the portfolio can
be constructed.

36

Mathematical Documentation Chapter 3

It is important to point out that the Efficient Frontier in monotonically increasing function
in risk and expected return. This means that if we are given a value of the expected return
then there will correspond a unique portfolio on the Efficient Frontier with a given total
risk. Conversely, if we are given the total risk of the portfolio then there will exist a unique
portfolio on the Efficient Frontier with a corresponding value its expected return.

Constraining the Weights of the assets of the Efficient Frontier’s Portfolios

Within our implementation we offer the possibility to constrain the weights of the assets
from which the portfolios on the Efficient Frontier are constructed. The constraints on the
weights on the portfolios are set by using the method setConstraints. We illustrate the use
constraints with the following example.

Say an investor requires a portfolio selected from n asset which has the lowest risk for
a given expected return but also has the requirement that all of the assets must have a
weight between 0.05 and 0.1 (i.e. between 5 and 10 percent). In this instance we would
need to set the constraints on the assets to be:

lowerBounds = { 0.05, 0.05, 0.05,...., 0.05 }
upperBounds = { 0.1, 0.1, 0.1,, 0.1 }

where each of the arrays above has the same number of terms as the number of assets
from which the portfolio can be constructed. Constraints can be set on the assets from
which the Efficient Frontier is constructed by using Portfolio.Markowitz.setConstraints,
constraints can also be added within the context of the evaluation of the Efficient Frontier
within the CAPM using Portfolio.Markowitz.setConstraints.

Remark: If the constraints are not set then they will take there default values which
are 0 and 1, for the lower bound respectively upper bound of each asset. That is, they will
remain as weights in the usual sense.

3.4.3 Constraints effect on the range of the Efficient Frontier

The placing of constraints on the weights of the assets effects the range of expected returns
for which the resulting portfolios can be constructed. Since the (constrained) Efficient
Frontier is just a collection of portfolios subject also subject to the constraints which min-
imize the risk for a given level of the expected return. The range of values over which the
Efficient Frontier exists must correspond to the range of expected returns of the possible
constructed portfolios.

Within the Markowitz and the CapitalMarket classes we provide the methods maxFrontierReturn,
and minFrontierReturn we allow the maximum and respectively minimum values of the
expected return over which the (possibly constrained) Efficient Frontier exists. We also
offer two associated methods maxFrontierReturnWeights and minFrontierReturnWeights,

37

Mathematical Documentation Chapter 3

which evaluate the assets weights of the portfolio at these two ends points. These two
methods which construct the Portfolios on the Efficient Frontier at its end points have the
significant advantage of having almost no computational overhead, unlike the construction
of the portfolios on the Efficient Frontier at other points.

Also, note that since the Efficient Frontier is monotonically increase in risk and expected
return, the therefore the point at which the maximum and minimum expected return on
the Efficient Frontier occur is also the points at which the maximum respectively minimum
of the risk of the portfolios on the Efficient Frontier occur.

Performance Issues

The introduction of constraints on the weights of the portfolios which form the Efficient
Frontier will have the following consequences with regards to overall performance:

� Upper Bounds - the presence of upper bounds (not all equal to 1) on the asset
weights will result in the construction of the corresponding Efficient Frontier requiring
significantly more computational resources. If however the upper bounds are all set
to 1 (i.e. there default value), then they will not effect the computational demands
required to evaluate the points on the Efficient Frontier. This allows lower bounds
to be set on the asset weight without reducing the performance of this class.

� Lower Bounds - the presence of lower bounds on the asset weights will have no
significant effects on the efficiency of the construction and analysis of portfolio on
the Efficient Frontier.

Notes on the Evaluation of the Efficient Frontier and the Optimal Portfolio

To calculate the Efficient Frontier, Rosen’s gradient projection optimization algorithm is
used. If you directly try to evaluate the optimal portfolio with respect to an investors
utility function then you will need numerous applications of Rosen’s algorithm which will
become computationally intensive. Therefore, we designed this class so that this would
not be necessary by allowing the computation at the beginning a number of points on
the Efficient Frontier, from which the other points will be deduced (in fact, estimated)
through the use of cubic spline interpolation. These interpolation points are determined
by calculateEfficientFrontier, which must be called prior to any subsequent method which
depends on the Efficient Frontier being known.

The use of this approach will also allow us to deal with the possible situation.

3.4.4 Consistency of the Assets and Effects on the Efficient Fron-
tier

This section deals with a rather technical issue concerning how the consistency of the col-
lection of assets from which the Portfolio on the Efficient Frontier can be constructed. By

38

Mathematical Documentation Chapter 3

consistency we mean consistency with the assumptions of Markowitz Theory and CAPM,
and how these inconsistencies effect are ability the construct optimal portfolio in a neigh-
borhood of the lower bound of the expected returns over which the Efficient Frontier exists.
That is, how appropriate the portfolios constructed from the available (“inconsistent”) as-
sets are to issues concerning the selection of the optimal portfolio. Hence the selection
of either portfolios with the lowest risk for a given expected return or portfolio with the
highest expected return with a given maximum risk.

When these effects occur

Note that the effects we will consider with this section will have relevance in the following
situations:

� Only effect a neighborhood of the lower bound of the expected returns over which
the Efficient Frontier exists.

� Will only occur when the portfolio considered are constructed from collections of
assets which are not consistent (see note below) the assumptions of Markowitz Theory
and CAPM.

Remark Similar effects do not occur in a neighborhood of the upper bound of the expected
return of the Efficient Frontier because at the upper bound by definition there do not exist
any portfolios with a higher expected returns so for that level of returns there are no
preferred portfolios.

Advice to the Reader

We advise the reader to skip this section at the first reading, and refer back if you encounter
such effects with the collection of assets you are using in order to construct the portfolios
within your given application.

Nature of Inconsistency

The way in which the collection of assets can be inconsistent lies in the fact that the
Markowitz Theory (and as we will see later the CAPM) assume that the investor will only
take on additional risk for a higher level of expected return. Therefore, in order for a
collection of assets to be consistent with these assumptions there must exist a portfolio
with a greater return if it has a higher risk. Unfortunately, this may not be the case if the
assets do not obey the rule that for a higher level of the expected return the risk increases.

If such a portfolio exists then the Efficient Frontier should only be considered on a subset
over the entire range of expected values on which it exists when selecting an optimal port-
folio. In particular, we will need to increase the lower bound of the expected returns over
which the Efficient Frontier is considered. The precise construction of the lower bound will
in general involve analysis of the differential of the Efficient Frontier. We implement these
procedures within the MaxRange class.

39

Mathematical Documentation Chapter 3

When Inconsistency will effect the Efficient Frontier application

He we detail when the effects of inconsistency of the historical source data will effect the
Efficient Frontiers ability the select the optimal portfolio. We only offer conditions under
which such effects are certain to take place. We refer the reader to the section on precise
lower bounds for a precise statement under which these effects take place.

When the asset with the lowest expected return does not have an upper bound on its
weight then this effect is certain to occur when:

‘the asset with the lowest expected return does not have the lowest risk and
does not have a constraint placed on its upper bound’

In the case when this asset does not have an upper bound on its asset weight then these
effects are certain to take place if:

‘The portfolio constructed by taking the maximum weight of the asset with the
lowest expected return, then the maximum weight of the asset with the next
to lowest expected return and so on... until the sum of the weights is one. If
there exists an asset from the remaining assets with a higher expected return
with a lower risk.’

Illustration of the Effect of Inconsistency

We illustrate in the diagram below the shape of the Efficient Frontier which can occur if
the collection of assets are not consistent.

Notes of Illustration: For all portfolios on the Efficient Frontier (i.e. red line) which
have a risk which lies between C and D, or equivalently an expected return which lies
between A and B; there exists a portfolio which has the same level of risk but has a high
level of return. Moreover, for all points (except end point) there exists a portfolio with a
lower risk and a higher expected return. Therefore, this section of the Efficient Frontier
should be ignored with respect to the construction an optimal portfolio from the assets
available (represented by small black squares in diagram).

40

Mathematical Documentation Chapter 3

Fig: The loop-back effect at the lower end of the range of the expected return

Further Remarks: Note that in order to obtain the portfolios with the lowest respec-
tively highest values of the expected return it is necessary to either construct a portfolio
which consists solely of the asset with the lowest respectively higher expected return (we
assume that these assets weights are not constrained). For this reason there is a rationale
for considering the Efficient Frontier at both of these points, since they are unique they
must by definition be the portfolio with that given (exact) level of return with the lowest
risk. However from the prospective of selecting the optimal portfolio corresponding to an
expected return at A (in the above diagram), it is not appropriate.

Another motivation for including the portfolio corresponding the A, and similar non-optimal
portfolios in the Efficient Frontier is that the portfolios at the extremes of the Efficient Fron-
tier lie at the vertex of the arced region (see dark gray shading in diagram below) in which
all the possible portfolios which can be constructed from the available assets lie.

41

Mathematical Documentation Chapter 3

Fig: All possible portfolios lie within the dark gray region.

Approximate Lower Bound of the ‘Maximum Range’

Therefore, from the point of view of applying the Efficient Frontier to selecting the optimal
portfolio we will need to evaluate a (new) lower bound greater than the bound over which
the Efficient Frontier exists over which the Frontier does only contain (justifiable) optimal
portfolios. Here we will provide a quick and easy approach which allows a lower bound to
be evaluated. Note that this lower bound will often not be optimal.

No Upper Bound Constraint on asset with the Lowest Risk

In the case when there are no constraints placed on the weight of the asset with the lowest
risk we are able to evaluate the (approx.) range of the expected return which should be
used when constructing the optimal portfolio is given by:

� Upper Bound on the Expected Returns: The expected return of the asset with the
highest expected return.

� Lower Bound on the Expected Returns: The expected return of the asset with the
lowest RISK.

If you use this range of expected returns then the Efficient Frontier constructed will not
display the problem of suggesting the below optimal portfolio. Note that in this instance if

42

Mathematical Documentation Chapter 3

you require a portfolio below this lower bound of the expected return for which the exists
an portfolio (i.e. an expected return is above the expected return of the asset with the
lowest expected return and below the lower bound set). Then you should just select the
portfolio on the Efficient Frontier with a risk equal to the risk of the asset with the lowest
risk.

With Constraints

In the case when there are constraints on the weights of the assets (or at least an upper
bound constraint on the asset with the lowest risk) then a construction based on similar
principles applies. This construction is as follows:

� Upper Bound on the Expected Returns: The expected return of the asset with the
highest expected return.

� Lower Bound on the Expected Returns: If you have an upper bound on the asset
with the lowest risk then form a portfolio by taking the maximum weight of this asset
then the asset with the next highest risk and so on... until the sum of the weights is
one. Then the lower bound on the expected return should be the expected return of
the portfolio constructed in this means.

These constructions have been implemented and offered as public methods within the
MaxRange class.

Discussion and Illustration of this Approach

In the below diagram we illustrate this approach. Note that in this case the lower bound
corresponding to a risk of F, is not optimal since the optimal points has an expected return
of A, and risk of C. Also, note that only the Efficient Frontier to the right of the intersection
will be considered (denoted by the arrow).

43

Mathematical Documentation Chapter 3

Fig: All possible portfolios lie within the dark gray region.

When we are interested in portfolios with an expected return above the lower bound pro-
vided by this approach then this approach is quite sufficient. However if we are interested
in portfolios which are below this bound then we will require the more precise (and com-
putationally demanding approach) given below. There are also instances in which the data
is so inconsistent that this approach will return a lower bound which is equal to the higher
bound. For an un-constrained asset set we illustrate this possibility within the following
diagram.

Fig: When the (approx) lower bound equals the upper bound.

44

Mathematical Documentation Chapter 3

Exact Evaluation of the Lower Bound of the ‘Maximum Range’

Though the above approach will yield an range over which all portfolios of the Efficient
Frontier are optimal portfolios, the lower bound on the range of expected returns will not
in general be optimal. In order to provide a precise evaluation of the lower bound of the
expected return we will need to use an algorithm which considers the differential of the
Efficient Frontier. In particular, we will need to construct the Efficient Frontier of the
possibly constrained assets and evaluate unique point (if it exist) where the rate of change
of the risk with respec to the expected return is zero. If this point is a minimum then
the corresponding value of the expected return at that point is the precise lower bound
over which the Efficient Frontier should be considered when used to construct an optimal
portfolio.

We use this indirect (i.e. via Frontier) approach because even if the historical source data
is not consistent with the assumptions of Portfolio Theory the above mentioned effects may
not take effect. We offer procedures which deal with this case within the MaxRange class.

3.4.5 Selecting the Optimal Portfolio

The construction of a portfolio with regard to an investors risk - reward profile lies at the
core of Markowitz Theory. By obtaining information concerning the value judgments to
the various risk - reward combinations which will be available to the investor we are able to
select the optimal (or preferred) portfolio for the continuum of portfolios on the Efficient
Frontier. If we where not aware of a given investors risk preferences then it would not be
possible to select a preferred portfolio on the Efficient Frontier. There are different level
of granularity of the investors preferences which are sufficient in order to select an optimal
portfolio. At one end the investor may only provide information concerning the maximal
level of risk acceptable or the level of expected return desired from which an optimal port-
folio can be selected. On the other hand the investors utility function may be given which
offers much more fine grained information concerning this investors risk-reward preferences
and allows a value judgment to be assign to a continuum of risk-reward combinations.

As mentioned above and within the over view of this section within Markowitz Theory
there are essentially three ways in which to select an optimal portfolio from the selection
of portfolios known as the Efficient Frontier which are each optimal for there correspond-
ing value of the expected return or risk. The three mechanism for selection the optimal
portfolio are as follows:

1. Give value of the Expected Return - Since the Efficient Frontier is monotonically
increasing and continuous in the expected return a point and hence portfolio can be
selected for a given value of the expected return over the range of the expected return.
Once the (possibly constrained) Efficient Frontier has been constructed we are able
to select an optimal portfolio by using Portfolio.Markowitz.efficientFrontier(double,
int); alternatively you may wish to use the approach of Portfolio.Markowitz.findRisk(
double, double[], double[])

45

Mathematical Documentation Chapter 3

2. Given value of the Risk - Since the Efficient Frontier is monotonically increasing
and continuous in the value of the risk a point and hence portfolio can be selected
for a given value of the expected return over the range of the total risk. Once the
(possibly constrained) Efficient Frontier is known we are able to select an optimal
portfolio by using Portfolio.SolveFrontier.findReturn(double, double[], double[])

3. Provide the Investors Utility Function - The investors utility function is the
locus of points at which the investor gets a particular level of satisfaction or utility
from a combination of expected return and risk. This function may be a function
with respect to the expected return or risk. By identifying the points at which the
utility function and Efficient Frontier coincide we are able to identify a collection
of portfolios which are optimal with respect to the investors expressed risk/return
preferences. If the utility function is given as a function of the expected return then
you can use Portfolio.Markowitz.optimalPortfolio(double, double, double[][]), Portfo-
lio.Markowitz.optimalPortfolioMaxExpected(double, double, double[][]), or alterna-
tively you may wish to use the approach; Portfolio.SolveFrontier.findRisk(double[],
double[], double[], double[], double). If the utility function is given as a function
of the total risk then the you will need to used Portfolio.SolveFrontier.findReturn(
double[], double[], double[], double[], double). For further details concerning the
details of our implementation we refer the reader to Portfolio.Markowitz or Portfo-
lio.CapitalMarket

Since the Efficient Frontier is monotonically increasing in the expected return and risk the
application and nature of selecting the optimal portfolio from knowledge of the expected re-
turn or risk is reasonably straightforward and we refer the reader to the Portfolio.Markowitz
and Portfolio.SolveFrontier for further discussion. However, with regard to the use of the
investors utility function there are a number of issues such as the means and equivalent
of the ways in which the utility function are given and the means by which a solution is
found which should be detailed further. In the following discussion we will treat each one
of these issues in turn.

Providing the Investors Utility function

A utility function is the locus of points at which the investor gets a particular level of
satisfaction or utility from a combination of expected return and risk. Clearly, each in-
vestor will have their own utility function depending on their individual trade-off between
expected return and risk.

We provide methods by which the optimal portfolio can be selected from the Efficient
Frontier when the investors utility function is given. Within our implementation you are
able to provide the investors utility function in one of two ways:

� Set of Interpolation Points - The utility function is given on a finite set of points
around which it can be interpolated in order to construct a continuous utility function.
This can be done by using Portfolio.Markowitz.setUtilityFunctionInterp.

46

Mathematical Documentation Chapter 3

� Given as a polynomial expansion by providing its coefficients - We are able
to construct a polynomial which represents the utility function if the coefficients of the
polynomial are given. This can be done by using Portfolio.Markowitz.setUtilityFunctionPoly.

Structure of the ‘Polynomial’ and ‘Interpolated’ Utility Function

As mentioned above the investors utility function can be given as a set of interpolation
points or in polynomial form. Here we provide further details as to the exact structure of the
utility function (in either form) which will need to be provided within our implementation.

1. Structure of the polynomial which defines the Utility Function

The polynomial which defines the investors utility function takes the following form:

p(x) = coef [0] + (coef [1] ∗ xi) + . . . + (coef [n− 1] ∗ xn−1)

where the coef [i], i = 0, ..., n − 1 are coefficients of the polynomial utility function
which are provided as a parameter. Now within this representation the values at the
variable x, corresponds to the risk level of a polynomial and the corresponding value
of p(x), is the value of the expected return which to investors demands in order to
be exposed to the chosen level of risk.

2. Structure of the Interpolation Utility Function

The interpolation utility function is generated by interpolating a tabulated func-
tion which is provided as two arrays. The first array corresponds to an ordered
sequence of the various total risk levels of the portfolio and is denote by x[0.., n− 1]
(with x[0] < x[1] < ... < x[n − 1]). The first term of the second array corresponds
to the expected return for the total risk x[0]. The second term of the second array
corresponds to the expected return for the total risk x[1]. The third term is defined
in a similar fashion and so on. This provides n coordinate points or equivalently
a tabulated function which we can interpolate in order to provide a unique utility
function which expresses the investors risk-reward profile.

The relationship between the Interpolation and Polynomial methods of setting
the Utility Function

Note that the two means of setting the utility function namely the interpolation and poly-
nomial procedures are closely related. Moreover we are able to roughly map between these
two means of representing the investors utility function.

If the interpolation points are known at (xi, yi), for i = 0, 1, ..., n − 1 then we can con-
struct the utility function given as a polynomial of order n, by solving the following n
polynomial expressions which will allow us to deduce to values of the coefficients of the
polynomial which takes the same values at the interpolation points:

p(xi) = coef [0] + (coef [1] ∗ xi) + . . . + (coef [n− 1] ∗ xn−1
i)

47

Mathematical Documentation Chapter 3

where i = 0, . . . , n and coef [i] are the coefficients of the utility function given in poly-
nomial form. Alternatively, if we are given a polynomial p(x) = y, which represents the
utility function of the investor then we are able to read off the interpolation points at
xi : i = 0, . . . , n − 1, by which the utility function can be defined in accordance with the
interpolation approach. That is, the interpolation points (xi, yi), for i = 0, 1, . . . , n− 1, for
some xi, i = 0, . . . , n− 1, are given by:

p(xi) = yi

where i = 0, . . . , n− 1.

The above procedure illustrates that there is a close relationship between the polynomial
and interpolation ways of defining the utility function. However care should be taken to
point out that though they are closely related they are not equivalent. The reason for this
is that the interpolation method uses cubic spline interpolation in order to construct the
utility function from the interpolation points. The polynomial method in general uses an
n degree polynomial in order to define the utility function. Therefore, except in the case of
the polynomial method using a cubic polynomial these two approaches can not represent a
utility curve which is identical for all points. However, in practice the above procedure will
result in a polynomial and interpolation representation which agrees on the interpolation
points and is generally qualitatively and quantitatively very close for non-interpolation
points.

3.4.6 Discovering the Investors risk - return profile

One final and in fact rather essential practical issue is how best to go about discovering
the investors utility function which can naturally only be done by obtaining information
from the investor themselves. However, information concerning the investors risk profile in
a usable quantitative form is often difficult to obtain because the investor has no natural
way in order to quantize his attitude to risk. Moreover, the nature (i.e. granularity) of
the information concerning the investors risk - reward profile you are able to obtain will
determine the form of the Markowitz Theory you are able to apply. For example, if you are
only able to obtain either the investors maximum risk or a lower bound of the level of the
expected return desired then you will only be able to obtain the portfolio on the Efficient
Frontier which corresponds to the upper bound on the expected return (in the case of
knowledge of the maximum risk) or a lower bound on the risk (in the case of knowledge of
the lower bound of the expected return).

Here we suggest a few approaches which should assist in your attempt to discover an
investors risk profile and translate this understanding into a usable quantitative form. Of-
ten the discovery of the investors risk profile will be closely related to the aims, objectives,
financial situation and motivation of the investor. By understanding the investment driv-
ing forces better you will be able to better tailor an investment portfolio which suits there
needs. Below we offer three scenarios and approaches which allow the investors risk profile

48

Mathematical Documentation Chapter 3

to be discovered sufficiently well that a unique optimal portfolio can be chosen from the
continuum of portfolios on the efficient frontier. The approaches include:

1. Investors attitude to differing loses: What probability of a 5%, 10%, 15%, 20%,
30% loss can the investor live with? From such information you will be able to esti-
mate the investors utility function if you assume that the distribution of asset returns
is in accordance with a given distribution (such as the LogNormal distribution). The
procedure required in order to estimate the investor utility function is to fit the dis-
tribution as closely as possible to the answers given. Since to distribution has been
we are able to read off the values of the standard deviation (i.e. risk) for different
values of the expected return (i.e. the utility function).

2. Learning of the investors objectives: Say an investor wishes to obtain a given
sum at a future date, that is, his utility is very much focused at achieving a certain
finance goal. Such instances come about with retirement planning where a given sum
is desired at retirement and we wish to achieve this sum by taking to lowest risk in
order to achieve this return.

In this instance you just need the investor to inform you of the return required.
Once this is known you can select the portfolio from the efficient frontier given for
this level of expected return. That is, the portfolio which can be constructed from
the available assets which has the desired expected return with the lowest risk.

3. Understanding the Investors Obligations: An investors has a sum for which he
wish to obtain the maximum return but also at the same time can not afford to lose
more than a given amount. Such instances could occur within a large corporation
which wishes to invest surplus cash within the market but cannot obtain loses of a
certain level on this cash if it is to retain its present credit rating. In such instances the
level of which the lose which the investor wishes to avoid at all possible costs should
be stated. Then assuming the distribution of returns follows a given distribution
(such as the LogNormal distribution) you will be able to state the change of such a
loss occurring for a given portfolio on the efficient frontier.

The type of procedure performed above in order to ascertain the investors risk profile is
in general referred to as calibration. Often the success of the application of a given model
from the theory of quantitative finance will come down the success with which we are able
to calibrate the parameters on which it depends.

3.4.7 Examples of selecting the Optimal Portfolio from the In-
vestors Utility Function

Within this section we include a number of examples which illustrate how the optimal
portfolio can be selected from the Efficient Frontier with the use of the investors utility
function.

49

Mathematical Documentation Chapter 3

Cross Below Efficient Frontier

This is the most common example which you will encounter. The range of the risk of the
utility function lies within a fairly narrow range implying that the investor is focused on
controlling the risk of the portfolio and hence is not prepared to significantly increase the
level of risk for significantly higher expected returns.

Note that if on the utility function the value of the risk is strictly positive when the
expected return is zero. Then the utility function will always determine at least one op-
timal portfolio if there exists a value of the expected return such that the corresponding
value of the risk of the Efficient Frontier is greater than the corresponding value of the risk
of the investors utility function.

Fig: Typical Utility function shape.

Concave Utility Function

This example is fairly typical with the concave (i.e increasing positive gradient) Utility
function usually resulting in an optimal portfolio with a relatively high value of the ex-
pected return. The reason being that the for relatively high values of the expected return
the investor is prepared to take on proportionally larger amounts of risk in order to achieve
a given increase in the expected return. Therefore, this utility functions shape would lead
us to believe that the investor places paramount importance in obtaining a high level of
expected return.

50

Mathematical Documentation Chapter 3

Fig: Concave Utility function resulting in a high expected return.

Cross Above Efficient Frontier

In this case the fact that the utility function for zero risk take of positive value of the
expected return implies that the investor is in theory content to hold a cash portfolio and
will only invest in risky assets if they match his risk-reward expectations. In order to meet
these expectation the utility function must become equal to or greater than the Efficient
Frontier for some value of the expected return.

Fig: Possibility of holding cash.

51

Mathematical Documentation Chapter 3

Utility Function as a function of Risk

The following example was included to illustrate how the methods provided within the
Portfolio.SolveFrontier class allow the use of utility functions which are functions of risk
(rather than the expected return). What this means in practice is that you are able to
investigate the investors risk-reward profile by asking the required expected return for a
level of risk. If the investors provides this information for a range of values of the risk then
you will be able to construct the (risk) utility function. We use the term ‘(risk) utility
function’ because by collection the investors profile in this form we are only certain that
the result utility function will be a function in risk. That is, given a value of the risk over
the range for which the Utility function is given there exists a unique corresponding value
of the expected return. However, if we select a value of the expected return there may not
exist a corresponding unique value of the risk of the utility function constructed by this
means.

In the following diagram we provide a example of a (risk) utility function).

Fig: (risk) Utility Function

3.5 Capital Asset Pricing Model (CAPM)

3.5.1 Overview

The CAPM allows the investors portfolio to be constructed from risky assets and ‘cash’
holdings or borrowings which are either lent or borrow from the market at some prevailing
rate. These additional options of allowing the portfolio to either borrow or lend cash at a
prevailing market rate accurately reflects the possibilities available and practices used with
the management of portfolios. That is, when a managed portfolio has excess capital it will
typical be lent to the market at the prevailing rate (which is typically around LIBOR).

52

Mathematical Documentation Chapter 3

Conversely, if the portfolio wishes to increase its positions (and hence expected return)
above the capital available within the fund then it will often borrow money at approxi-
mately the prevailing market rate (which is typically around LIBOR).

Remark The CAPM simplifies the situation in that it does not take into effect the
credit worthiness of the fund when it wishes to borrow cash from the market. However,
the assumptions are not unreasonable if we assume that the fund does not become very
leveraged, since the fund could in principle at least arrange Repo agreements which would
allow it to borrow additional capital at close to the prevailing market rate.

Comparison of CAPM with Markowitz Model

The Capital Asset Pricing Model (CAPM) is an extension of the Markowitz Model. That is,
within the construction of the CAPM we assume all the assumption of the Markowitz Model
(see 3.1.1) but in addition the investor has the following two options when constructing a
portfolio:

1. Lend excess capital at the Market Rate: The investor may lend money at the
prevailing market rate. This constitutes the ability to hold within the portfolio a
risk free asset which will provide the prevailing return available on cash. In practice,
such assets are often referred to as a money market accounts and will yield a return
in the region of LIBOR.

2. Borrow capital at the Market Rate: The investor may borrow money from the
market at the prevailing market rate in order to invest within (risky) assets. This
will increase the expected return of the original capital base and also increase its
risk. In practice, the rate at which money can be lent from the market by a fund will
be in the region of LIBOR (at least if the fund structure the loan as a REPO type
agreement).

Remark Note that the rate of which money can be borrowed or lend from or to the
market is the same.

The similarity of the assumptions of the two models are reflected in there development.
In particular, the Efficient Frontier in the sense of Markowitz Theory also plays in central
role within the CAPM. In the following section we will explain why the optimal portfolio
which in the Markowitz Theory consisted of a locus (i.e. curve) have been transformed to
lie of a line in the case of CAPM.

3.5.2 Nature of the Capital Asset Pricing Model (CAPM)

The introduction of the risk free asset, namely cash along with the risky assets transforms
the ‘curve’ on which the optimal portfolios found with respect to the Markowitz Theory
into a straight line, known as the Capital Market Line (CML) on which the optimal port-
folios with respect to the CAPM lie. The reason for this is that in all cases in order to
obtain the optimal portfolio with respect to the CAPM, that is the portfolio which offers

53

Mathematical Documentation Chapter 3

a given return for the minimal risk. You will need to construct a portfolio which consists
of a ‘weighting’ of the ‘Market Portfolio’ (explained below) and either lend excess cash
to the market or borrow cash from the market in order to purchase more (baskets) of the
Market Portfolio.

The Market Portfolio is the portfolio on the Efficient Frontier in the sense of Markowitz
Theory (see 3.4.2) which offers the greatest return per unit of risk. Expressing this analyt-
ically the Market Portfolio is the portfolio on the Efficient Frontier which maximizes:

Expected Return of the Portfolio

Total Risk of the Portfolio

The reason for this is that the investor whatever his risk/reward profile will seek the port-
folio which offers the greatest return of a given level of risk, or the minimum risk for a
given level of return. Clearly, at the level of the expected return of the Market Portfo-
lio, the Market Portfolio itself is the optimal portfolio. However, if you wish to obtain
a portfolio with a higher expected return then you should borrow cash (with zero risk)
from the market in order to purchase more (baskets) of the ‘Market Portfolio’. Since the
Market Portfolio is the cheapest way in terms of risk to increase the return of the portfolio.
Similarly, if you wish to obtain a portfolio with a lower expected return than the Market
Portfolio. You will need to hold a sufficient weighting of the Market Portfolio in order that
a portfolio consisting of a weighting of the Market Portfolio with the remaining capital
held as (zero risk) cash holdings will ensure the desired level of the expected return. Again
the rationale for this construction is that the cheapest way to increase the expected return
of a portfolio invested in cash is to move some of the cash into the Market Portfolio which
by definition offers the cheapest means with regard to risk in obtained a higher expected
return.

Therefore, when selecting the optimal portfolio with respect to the CAPM one of three
possible scenarios will occur:

1. Borrow money at the prevailing market rate in order to purchase further blocks
of the Market Portfolio. That is, the portfolio which offers the greatest expected
return per unit of risk. Since the cash borrowings are risk free and unlimited you
can in principle hold an arbitrarily large amount of the Market Portfolio using the
same (original) capital base. Allowing the portfolio to be geared to a level where are
arbitrarily high value of the expected return can be obtained.

2. Lend Money at the prevailing rate if you do not require the level of expected return
which is offered by investing all the available capital in the Market Portfolio. That
is, the portfolio with the highest expected return per unit of risk. The rationale
being that even if you require a lower level of expected return a weighted portfolio
between the cash with zero risk (and a positive return) and the most efficient means
to purchasing additional expected return (i.e. the Market Portfolio) is going to be
most efficient means of obtaining the desired level of the expected return.

54

Mathematical Documentation Chapter 3

3. No cash holdings or borrowing: if the expected return (or risk) you require is
the same as the expected return (or risk) of the Market Portfolio.

The line within the risk/reward plain which replaces the Efficients Frontier of Markowitz
Theory is known as the Capital Market Line (CML). Where each point on the CML
corresponds to an optimal portfolio (i.e. minimum risk for a given value of the expected
return) with respect to the CAPM.

3.5.3 Applying the CAPM

Since the optimal portfolios with regard to the CAPM all lie on the CML within applica-
tions we will nearly always proceed along the following lines:

1. Construction of the Efficient Frontier

2. Evaluation of the Market Portfolio

3. Constructing the CML

4. Selecting a Portfolio from the CML

Construction of the Efficient Frontier

The implementation of the construction of the Efficient Frontier for the CAPM follows
along exactly the same lines as the implementation provided for the Markowitz Theory
and we refer the reader to the earlier section 3.4.2 for general advice concerning the setting
of constraints and other issues effecting the construction of the Efficient Frontier. Though
the techniques used within the construction does following along similar lines within the
implementation of the CAPM we have only exposed the functionality necessary for the
application of CAPM. In particular, you will find the followings two methods within the
Portfolio.CapitalMarket class:

1. Portfolio.CapitalMarket.setConstraints - Sets of the constraints (lower and upper
bounds) on the assets within the collection of (risky) assets from which the market
portfolio and the other portfolios on the Efficient Frontier will be evaluated.

2. Portfolio.CapitalMarket.calculateEfficientFrontier - Evaluates a finite number of points
on the Efficient Frontier of the collection of assets from which the market portfolio
can be constructed and store them within a private field. It is necessary to evaluate
the Efficient Frontier because by definition the Market Portfolio is the portfolio on
the Efficient Frontier which offers the maximum expected return per unit of risk.

Remark In order to make a more detailed study of the Efficient Frontier we refer you to
the methods contained within the Markowitz class.

By applying these two methods the Efficient Frontier is constructed as follows:

55

Mathematical Documentation Chapter 3

1. Evaluated the Efficient Frontier at a finite number of points. That is, find the port-
folio which exhibits the lowest risk for a given expected return from the collection of
asset available. Note that the weights of the assets may be subject to constraints.

2. Interpolate about these points using cubic spline (or some other method) in order
to construct the Efficient Frontier. Since the Efficient Frontier by nature is ‘smooth’
using cubic spline interpolation to construct the Efficient Frontier will not introduce
significant errors.

The points on the Efficient Frontier are portfolios constructed from the set of assets con-
sidered which exhibit the lowest risk for a given expected return. These portfolio are
characterized by the following three characteristics:

1. Expected Return - The expected return of the portfolio which is estimated from the
historical returns of the assets within the portfolio.

2. Total Risk - The total risk of the portfolio which is estimated from the historical
returns of the assets within the portfolio.

3. Asset Weights - the weights of the collection of assets from which the portfolio can
be constructed.

It is important to point out that the Efficient Frontier in monotonically increasing function
in risk and expected return. This means that if we are given a value of the expected return
then there will correspond a unique portfolio on the Efficient Frontier with a given total
risk. Conversely, if we are given the total risk of the portfolio then there will exist a unique
portfolio on the Efficient Frontier with a corresponding value its expected return.

Evaluation of the Market Portfolio

The Efficient Frontier is the collection of portfolios constructed from the given set of avail-
able assets. These portfolios have the lowest risk for a given value of the expected return
with the possibility of constraints on the weights of the assets.

Once the Efficient Frontier has been constructed are next aim within the application of the
CAPM is to find which portfolio on the Efficient Frontier which is the Market Portfolio.
That is, the portfolio on the Efficient Frontier which maximizes:

Expected Return of the Portfolio− risk free rate

Total Risk of the Portfolio

The Market Portfolio is selected from the Efficient Frontier using the method Portfo-
lio.CapitalMarket.marketPortfolio, which will return the (possibly constrained) weights of
the Market Portfolio which has the highest expected return over the risk free rate per unit
of risk.

56

Mathematical Documentation Chapter 3

Uniqueness of the Market Portfolio

Here we discuss the ‘uniqueness’ of the market portfolio subject to some remarks concern-
ing the given collection of assets from which the portfolios of the Efficient Frontier are
constructed. These remarks though assisting in a deeper understanding of CAPM (and
Markowitz Theory) can be safely skipped for those solely interested in the application of
the CAPM (or Markowitz Theory).

The uniqueness of the Market Portfolio depends in the nature of the collection of as-
sets from which the Efficient Frontier is constructed. Clearly the Efficient Frontier is
convex and hence if we assume that there are two (or more) distinct Market Portfolios
then it follows that one Market Portfolio is a leveraged version of the other in the follow-
ing sense. The covariance between the two (distinct) market portfolios must be one since
otherwise by holding a weighting of both market portfolios and gaining from the effects
of diversification we are able to construct a portfolio with a higher expected return per
unit of risk. Therefore, the covariance between any distinct Market Portfolios must be one.

In fact, if there are two distinct market portfolios with differing values of the risk and
expected return then there exists an continuous range of Market Portfolios (i.e. an infinite
number) in risk and expected return within the intervals of the risk and expected return
of the two given Market Portfolios. The reason for this is that we can form a weight-
ing of the two Market portfolios which forms another Market Portfolio (i.e. it has the
same expected return per unit of risk) which has any value of the expected return or risk
within there respective intervals. This possibility becomes clear if we consider the portfolio
R = aP + (a − 1)Q, where a lies in the interval [0, 1], and where P, Q are the two given
Market Portfolios. Now as a varies from 0 to 1 the portfolio R’s expected return and risk
will vary over all values within the respective domains but the expected return per unit of
risk will remain fixed. That is, they will all be Market Portfolios.

Constructing the CML

The Capital Market Line (CML) is simple the line within the risk - expected return plain
which passes through the Market Portfolio and cash. Below we derive formulae for the
construction, expected return and risk of an arbitrary portfolio on the CML. We also refer
the reader to the diagram of the CML at 3.5.4 which is probably to quickest and easiest
means to obtain a better understanding on the CML and its construction.

Expressing this analytically: If we construct a portfolio from a (positive or negative)
weighting of cash (C) where the prevailing market rate on lending and borrowing cash
is r, and the Market Portfolio (M) for a given collection of (possibly constrained) assets
denoted by M with an expected return of E(M) and risk of R(M), then all portfolios (P)
on the CML will take the following form:

P = xcashC + xmarketM

57

Mathematical Documentation Chapter 3

where xcash + xmarket = 1; with the real numbers xcash, xmarket denoting the weighting of
cash and the Market Portfolio within the constructed portfolio on the CML P .

The expected return E(P), of the constructed portfolio P is given by:

E(P) = xcashR + xmarketE(M)

where as mentioned above R is the return on cash and E(M) is the expected return of the
Market Portfolio, and where again xcash +xmarket = 1; with the real numbers xcash, xmarket

denoting the weighting of cash and the Market Portfolio within the constructed portfolio
on the CML P .

Similarly, the risk σP , of the portfolio P is given by:

σP = (1− xcash)σm = xmarketσm

where σm is the risk of the Market Portfolio, and where again xcash +xmarket = 1; with the
real numbers xcash, xmarket denoting the weighting of cash and the Market Portfolio within
the constructed portfolio on the CML P .

Remark With the Portfolio.CapitalMarket class we provide methods by which the ex-
pected return and risk of the Market Portfolio can be constructed. Moreover, we also offer
within this class means by which the weighting of the Market Portfolio of an arbitrary
portfolio on the CML can be found. In fact, in turns out (see 3.5.3) that if we know any
one of the expected return, risk or Market Portfolio weighting of a portfolio on the CML
then we are able to deduce the other two properties.

Selecting a Portfolio from the CML

The Capital Market Line (CML) is a collection of portfolios which can be constructed from
the available (risky) assets with the option of borrowing or lending (risk free) cash at the
prevailing market rate. Since by default the amount of cash which can be borrowed or
lend is not restricted the expected return of the resulting portfolios can be anything equal
or greater than the return available from cash. Similarly, the risk from possible portfolios
can (by default) be any positive number.

We allow within this Component the portfolios on the CML to be selected from knowledge
any one of the following:

1. Expected Return

2. Total Risk

3. Weighting of the Market Portfolio

This in fact allows for the greatest generality and moreover which even property is used in
the identification the other two properties can be deduced as described below.

58

Mathematical Documentation Chapter 3

Completeness of the Methods: riskCML, weightCML, returnCML, weight2Risk
of the CapitalMarket class

The portfolio on the CML can be selected when one of the following three properties is
known:

1. Total Risk of the optimal portfolio on the CML.

2. Expected Return of the optimal portfolio on the CML.

3. Weighting of the market portfolio on the CML.

Then using the above mentioned methods we are able to evaluate the other (two) quanti-
ties from the three properties which are listed above. For example, if the expected return
of the portfolio is known then the weight of the market portfolio can be evaluated using
weightCML and the risk can be evaluated using riskCML. If on the other hand the total
risk of the portfolio is known then the corresponding expected return of the portfolio can
be evaluated by returnCML, and then using this deduced value we are able to evaluated the
weight of the market portfolio using weightCML. For completeness we include the method
weight2Risk which evaluates the risk of a portfolio on the CML when the weight of the
market portfolio within the CML portfolio is known. From knowledge of the risk of the
CML portfolio we able to evaluate the corresponding value of the expected return using
the method returnCML.

Therefore, using the three ‘. . .CML’ methods along with ‘weight2Risk’, which ever one
of: total risk, expected return or weight of market portfolio, is used in order to select
the optimal portfolio from the CML we are able to deduce the other two quantitative
properties.

3.5.4 Summary of the CAPM

We summarize the CAPM with the following diagram which contains the Efficient Frontier
(the black curve) which is first evaluated, then the Market Portfolio (denoted by a red
square) is found on the Efficient Frontier. After which when ‘cash’ (denoted by red square
on Expected return axis) we are able to construct the CML (red line) by drawing a line
through cash and the Market Portfolio.

59

Mathematical Documentation Chapter 3

Fig: The CML, Market Portfolio, and the Efficient Frontier

The gray perpendicular lines on the diagram running off from the Market Portfolio indicates
the values of the risk and expected return of the Market Portfolio. Any portfolios to the
left on the risk axis to the Market Portfolio on the CML are portfolio which borrow cash
from the market. Similarly, any portfolio to the right on the risk axis on the CML are
portfolio which lend cash to the market. In a similar fashion, any portfolios on the CML
with an expected return greater than the Market Portfolio (i.e. above the gray horizontal
line) borrow cash from the market, and any with a lower expected return (i.e. below the
gray) lend cash to the market.

3.5.5 Putting constraints on the level of borrowing and lending

At present we are able to place constraints on the weights of the (risky) assets from which
the portfolios on the Efficient Frontier used within the Markowitz Theory and CAPM can
be evaluated. This allows the risky asset held within the portfolios on the Efficient Frontier
from which in the case of Markowitz Theory the optimal portfolio will be selected. Hence,
within the framework on Markowitz Theory we have a means by which to place constraints
on all the assets of the optimal portfolio.

In the case of the CAPM, a portfolio can also contain either cash holdings (i.e. free risk
assets yielding the prevailing market rate on cash) or borrowings (i.e. money borrowed
from the market at the prevailing market rate). Are aim here is to rationalize and detail

60

Mathematical Documentation Chapter 3

the issues related to why and how constraints can also be placed on the cash holdings or
borrowings.

Rational of Borrowing Limit

Within the mandate of a fund, the manager will often be set a maximum amount of gearing
which the fund can take. If the manager ever wishes to go above this level then they will
need to obtain authorization from the funds board.

From the point of view of risk management and hence credit rating and regulation. If
there is maximum level of gearing then there is a worst case scenario otherwise the worst
case scenario since the gearing is unlimited is unlimited losses.

Rational for a Cash Limit

The existence of a cash limit forces the fund to invest within the market which it addresses.
The primary motivation for introduction such a limit are as follows:

1. Role of a Fund Manager: A portfolio manager to paid to invest money by selecting
assets within a given sector or market. After all if the money is just deposited within a
bank account the fund manager will still collect the management fee without reflecting
his mandate. The mandate explicitly said invest in... If the investor wants to be out
of the market then they can take money out of the fund.

2. Reflect fund description/mandate: An equity fund should not be a money mar-
ket fund. I.e. Having limit like no more the 40% in cash at any time is reasonable.
If this is not possible then capital should be returned to investors for similar reasons
as within any other business.4

Mechanics of controlling the Cash/Borrowing Level

Within the CAPM the optimal portfolios which are constructed from a combination of the
Market Portfolios with the possibility of cash holdings or borrowings lie on the CML. If
there is a pre-defined limit on the level of cash holdings or borrowings then these limits
will translate into a limit on the weighting the Market Portfolio within the portfolio of
the CML. From limits on the weighting we will be able to imply the limits on the risk, or
expected returns of the portfolio on the CML which satisfies the cash and borrowing limits
since as shown above if one of the following three: weighting, risk, expected return; are
known then the other two can be deduced.

4For further discussion on the effect of retaining earners and compounding we refer the invested reader
to; The Essays of Warren Buffet, Lessons for Investors and Managers, edited by L.Cunningham.

61

Mathematical Documentation Chapter 3

Implemented as an Example

We provide within this package a client example which illustrates how constraints on the
level of cash lending or borrowing can be used. The client is entitled:

CapitalMarketClient CashConstraints

This example illustrate how constraints may be placed onto the levels of the cash held
or borrowed to the market by an optimal portfolio constructed in accordance within the
Capital Asset Pricing Model. We show how the resulting continuous range of the values
of the expected return and total risk can then be deduced which identify which optimal
portfolios can be selected when the cash level constraints are observed.

In particular we consider the following problem:

We know that the market portfolio of a collection of assets has an expected
return of 10 percent per year and a risk of 20 percent per year, we also know
that cash can be borrow or lend from the market at a prevailing rate of 5 percent
a year. According to the CAPM if the portfolio manager can only leverage his
portfolio by 20 percent, and must also never hold more than 30 percent of the
funds capital in cash then what is the range of total risk and expected return
of the (optimal) portfolios which the fund manager can hold?

3.6 Performance Evaluation

As we discussed earlier since there is a relation between the risk and the expected return
from an asset (CAPM) an assessment of a portfolios performance based only on the abso-
lute return is misleading and unfair. Therefore, we describe standard methods which are
used to given a risk adjusted performance measure.

Within the US mutual fund market there are more than 12,000 funds which apply a variety
of investment styles and have a different mix of investment assets. Broadly speaking US
mutual funds can be split into the following categories growth funds, balanced funds, in-
come funds, government bonds funds, junk bond funds and international funds. According
the CAPM the investors would expect a greater return from a growth fund which invests
in stocks than a government bond fund because the growth fund will exhibit more volatil-
ity. The amount of “out performance” of the growth fund over the bond fund which the
investor would expect is the topic of this section.

We offer various methodologies which are used for the evaluation of portfolio performance
in the broad sense. These measures are widely used and offer a fast and efficient way in
order to make informed comparisons between portfolio performance taking into account
risk, return, asset class mix, yield and market conditions.

Within our components we implement the following methods:

62

Mathematical Documentation Chapter 3

� totalReturn - calculates the total return of the portfolio over a given period taking
into account any disbursements and dividends payments

� geometricMeanReturn - the geometric mean of the return over a number of periods.
Say the return is quoted for a 2 year period then by taking the number of periods as
2 the method will return the equivalent return over a 1 year period

� sharpesRatio - we implement Sharpe’s ratio which takes into account both the
return and risk when accessing a portfolios performance

� treynorsMeasure - Treynors performance measure which takes into account the sys-
tematic risk (or beta) and the average return when assessing the overall performance

3.6.1 Comparing the Sharpe and Treynor Performance Measures

The Sharpe portfolio performance measure is based on the capital market line (CML) and
total risk, which makes it more suitable for evaluating portfolios rather than individual
assets. On the other hand, Treynor performance measure is based on the capital asset
pricing model (CAPM) and are more flexible because by using systematic risk (beta) it
can be used to evaluate the performance of both portfolios and individual assets. Both
performance measures tend to rank a group of diversified portfolios similarly.

3.7 Further and Supplementary Reading

3.7.1 Supplementary Reading

� H. Markowitz Portfolio Selection, Journal of Finance, 1952, p77-91

This fundamental paper establishes the basis of the Markowitz theory and
shows that portfolios dominate individual assets from a risk and return
standpoint. Further it shows how to construct optimal portfolios with
ideal risk - return characteristics.

3.7.2 Further Reading

� H. Markowitz Portfolio Selection, Efficient Diversification of Investments, Basil
Blackwell

Expands on the classic 1952 article listed above detailing the modern treat-
ment and development of the theory.

� W. Sharp A Simplified Model for Portfolio Analysis, Management Science, Vol. 9,
p27-93

63

Chapter 4

Programmer’s Guide for Microsoft
r

Office

This chapter describes the steps to take in order to integrate WebCab Portfolio with most Office
documents, such as Excel worksheets, and Access documents. The integration is achieved both
through VBA (Visual Basic for Application) code and features specific to the Office Application
you are using to write your documents. The information in this chapter applies equally to
Microsoft Office 2000, XP, and 2003 Applications and documents.

4.1 Developing with VBA from Office

This section describes how to write a VBA client for a business class documented in the
API Reference for this product. The steps below are the same across all Microsoft Office
Applications (Word, Excel, Access etc.) and involve using the Visual Basic Editor and
writing several lines of code:

1. Open the Visual Basic Editor

2. Add a Code Module

3. Declare a Subroutine

4. Add a Reference to This Product

5. Declare a Class Instance Variable

6. Create a Class Instance

7. Call a Class Method

8. Display the Method Result

9. Run the Subroutine

64

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.1: Starting the Visual Basic Editor in Excel

4.1.1 Open the Visual Basic Editor

In order to add VBA code to your Office document, you will first need to open the Visual
Basic Editor, by going to the Tools | Macro | Visual Basic Editor menu, as shown in figure
4.1.

4.1.2 Add a Code Module

In the upper-left corner of the Visual Basic Editor window, you can find all Office objects
associated with your document. Right click any of the objects and select Insert | Module,
as shown in Fig. 4.2 in order to add a new VBA module to your project. A code window
will appear, where you will be writing the code that will enable you to use this product’s
functionality.

4.1.3 Declare a Subroutine

The first step in writing the code, which makes use of the functionality provided by this
product is to declare a subroutine, which can then be run directly from your Office Appli-
cation. To declare a subroutine, use the Sub and End Sub keywords and the name you wish
to assign to this subroutine. For example, in order to declare a subroutine named run, you
would write the code displayed in Fig. 4.3.

65

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.2: Adding a module to a VBAProject

Fig. 4.3: Declaring a subroutine named run in VBA

4.1.4 Add a Reference to This Product

Adding a reference to this product is required only once for every Office document that uses
functionality provided by this product. This step will enable VBA code auto-completion
for all business clases and methods that belong to this product, saving you time typing
and browsing the API Reference. Also, it will speed up all calls to this product’s methods,
increasing the overall performance of your project.

66

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.4: Opening the “References” window in the Visual Basic Editor for Office

Fig. 4.5: Selecting a reference to a WebCab product, here ‘Functions’

To add a reference to this product, go to the Tools | References... menu as shown in
Fig. 4.4 in order to open the “References” dialog window. Scroll down and select the entry
named WebCab Portfolio Demo from the list of available references in the dialog window
and then click OK. Figure 4.5 shows how to add a reference to WebCab Functions Demo.

67

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.6: Creating a new instance of a class named “Interpolation”

4.1.5 Declare a Class Instance Variable

The API Reference for this product describes all business classes, their methods and prop-
erties, and offers advice on how to use each of them. You can browse the API Reference
from the Start Menu at Programs | WebCab Components | Portfolio for .NET | COM | API
Reference. In order to call methods of a business class listed in the API Reference, you
need to declare a variable to hold a reference to its instance.

Write a Dim statement to declare a variable of the same type as the business class that you
wish to make calls to. For example, if you wish to call methods belonging to a business
class named “Interpolation” and declare a variable of this type named instance, you would
write the following:

Dim instance As Interpolation

4.1.6 Create a Class Instance

In order to create an instance of a business class listed in the API Reference, you will have
to write code that connects to its corresponding COM server1.

Use the Set keyword in order to assign the class instance to the variable you have de-
clared in the previous step. The Set keyword is required in class instance assignments,
as omitting this keyword would result in a run-time error. The reference assigned to this
instance is created by writing the New keyword, followed by the name of the same business
class you used to declare the variable.

1“COM server” is a generic term used to describe a COM interface, which provides functionality to VB
and VBA applications.

68

Programmer’s Guide for Microsoft Office Chapter 4

For example, assume you wish to create an instance of a business class named Interpola-
tion, which is located in the WebCab Functions for .NET product. Figure 4.6 shows how
to create an instance of this class and how to assign it to the instance variable declared
in the step above.

4.1.7 Call a Class Method

In order to call a method belonging to a business class for which you have created an
instance, you can use the name of the method as listed in the API Reference and append
it to the name of the variable that holds the class instance, separating it with a period.
For example, in order to call a method named MyMethod, you could write the following
line of code:

result = instance.MyMethod (parameter-values)

where parameter-values are the ordered values of the parameters separated by a comma.
The actual type of these parameters and that of the results variable depends on the signa-
ture (i.e. the return type and parameter types) of the MyMethod method.

Remark For a more detailed Visual Basic example of how to invoke a method, see
section 4.1.10.

4.1.8 Display the Method Result

To see what the result of the method call was, you can display it inside a window by calling
the MsgBox function, as shown below:

MsgBox "The result of the method call was " & result

This line of code will display a small dialog window containing the result of the method
call.

4.1.9 Run the Subroutine

After having finished writing the subroutine code as described in the steps below, you can
run the subroutine. There are several ways to run a subroutine, two of which are described
below:

1. Type F5 in the Visual Basic Editor
You can run your subroutine by placing the editing cursor within its body (i.e.
between the Sub and End Sub keywords) and pressing the F5 key. This will instantly
execute the subroutine, bringing up the result window.

69

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.7: Opening the “Macro” window from the menu in Excel.

2. Run the Soubroutine as a Macro
You can run the subroutine even after having closed the Visual Basic Editor, directly
from the Office Application you are using. Go to the Tools | Macro | Macros... menu,
as shown in Fig. 4.7 to open the “Macro” dialog window. Select the macro, which
has the same name as your subroutine and click Run (see Fig. 4.8).

70

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.8: Running a subroutine macro named run from Office.

71

Programmer’s Guide for Microsoft Office Chapter 4

' Declaring a subroutine named `run'
Sub run()

Dim instance As Interpolation
' Creating an new `Interpolation' instance
Set instance = New Interpolation

' Declaring the first parameter (a double array)
Dim x(0 To 4) As Double
x(0) = 1
x(1) = 2
x(2) = 3
x(3) = 4
x(4) = 5

' Declaring the second parameter (a double array)
Dim y(0 To 4) As Double
y(0) = 3
y(1) = 2.4
y(2) = 1.7
y(3) = 1.4
y(4) = 0.7

' Declaring the variable to hold the method result
Dim result As Double

' Calling the `CubicSplinePointwise' method. All other
' parameter values are being written here. The result
' is stored in the `result' variable.
result = instance.CubicSplinePointwise(x, y, -0.6, -0.7, 1.2)

' Printing the result inside a dialog window
MsgBox "The result of the method call was " & result

End Sub

Table 4.1: Generic Office VBA Example

4.1.10 A Generic VBA Example for Office

In this section we provide the complete VBA source code for a subroutine named run,
which makes a call to a method in a business class and prints the result of the method call
inside a window. The same steps mentioned above are being followed in this example.

The code in table 4.1 calls a method named CubicSplinePointwise, belonging to the Interpo-
lation business class in the WebCab Functions product. This method takes five parameters,
of which the first two are one-dimensional arrays and the last three are double values. The

72

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.CubicSplinePointwise.html
http://webcabcomponents.com/dotNET/dotnet/functions/demo.shtml

Programmer’s Guide for Microsoft Office Chapter 4

method returns a double value.

4.2 Integrating with Microsoft Excel

This section is dedicated exclusively to Microsoft Excel users, who wish to tightly and
seamlessly integrate the functionality provided by this product directly into Excel. At the
end of this section, you will have learned how to create your own user-defined functions,
which you can call directly from your worksheets as formulas or from the Insert | Function...
menu. The following steps describe completely how to achieve integration of this product’s
functionality within Excel:

1. Open the Visual Basic Editor

2. Add a Code Module

3. Declare a Function

4. Add a Reference to This Product

5. Declare a Class Instance Variable

6. Create a Class Instance

7. Call a Class Method

8. Store the Method Result as a Function Return Value

9. Insert the Function in your Worksheet

4.2.1 Open the Visual Basic Editor

First you will need to open the Visual Basic Editor, by going to the Tools | Macro | Visual
Basic Editor menu, as shown in figure 4.1. The Visual Basic Editor will allow you to write
the necessary VBA code that uses the functionality provide by this product.

4.2.2 Add a Code Module

In the upper-left corner of the Visual Basic Editor window, you can find all Microsoft Excel
objects associated with your workbook. Right click any of the objects and select Insert |
Module, as shown in Fig. 4.2 in order to add a new VBA module to the existing Visual
Basic project. A code window will appear, where you will be writing the code that will
enable you to use this product’s functionality.

73

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.9: Declaring a function named “MyFunction” in VBA

4.2.3 Declare a Function

In the source code window, declare a function using the Function and End Function key-
words. You can pick any name you wish for this function, as you will be able to call it
directly from a worksheet, like a regular Excel formula. You can change the name of the
function at any later time, by simply editing the function declaration. Figure 4.9 shows
how to declare a function named MyFunction.

4.2.4 Add a Reference to This Product

As described in section 4.1.4, in order to add a reference to this product, you will need to
go to the Tools | References... menu as shown in Fig. 4.4. This will open the “References”
dialog window. Scroll down and select the entry named WebCab Portfolio Demo from the
list of available references in the dialog window and then click OK. Figure 4.5 shows how
to add a reference to WebCab Functions Demo.

4.2.5 Declare a Class Instance Variable

The API Reference for this product details all business classes, their methods and prop-
erties, and gives advice on how to use each of them. You can browse the API Reference
from the Start Menu at Programs | WebCab Components | Portfolio for .NET | COM | API
Reference. In order to call methods of a business class listed in the API Reference, you
need to create a variable to hold a reference to its instance.

Write a Dim statement to declare a variable of the same type as the business class that you
wish to make calls to. For example, if you wish to call methods belonging to a business
class named “Interpolation” and declare a variable of this type named instance, you would
write the following:

74

Programmer’s Guide for Microsoft Office Chapter 4

Dim instance As Interpolation

4.2.6 Create a Class Instance

Use the Set keyword in order to assign the class instance to the variable you have declared
in the previous step. The Set keyword is required in class instance assignments, as omitting
this keyword would result in a run-time error. The reference assigned to this instance is
created by writing the New keyword, followed by the name of the same business class you
used to declare the variable.

For example, the Interpolation business class inside the WebCab.COM.Math.Interpolation
namespace has the following full name: WebCab.COM.Math.Interpolation.Interpolation.
In order to create an instance of this class and assign it to the variable we have declared
in the previous step, we would write the following VBA code:

Set instance = New Interpolation

4.2.7 Call a Class Method

In order to call a method belonging to a business class for which you have created an
instance, you can use the name of the method as listed in the API Reference and append
it to the name of the variable that holds the class instance, separating it with a period.
For example, in order to call a method named MyMethod, you would write the following
line of code:

instance.MyMethod (parameter-values)

where parameter-values are the ordered values of the parameters separated by a comma.
The actual type of these parameters and that of the results variable depends on the signa-
ture (i.e. the return type and parameter types) of the MyMethod method.

Remark For a more detailed Visual Basic example of how to invoke a method, see
the next section, 4.2.8.

4.2.8 Store the Method Result as a Function Return Value

The result of the method call must be stored as the method’s return value, by assigning
the method’s result to the the the name of the function itself, as shown below:

MyFunction = instance.MyMethod (parameter-values)

75

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html

Programmer’s Guide for Microsoft Office Chapter 4

' Declaring a function named `MyFunction'
Function MyFunction()

Dim instance As Interpolation
' Creating an instance of the `Interpolation' business class
Set instance = New Interpolation

' Declaring the first parameter (a double array)
Dim x(0 To 4) As Double
x(0) = 1
x(1) = 2
x(2) = 3
x(3) = 4
x(4) = 5

' Declaring the second parameter (a double array)
Dim y(0 To 4) As Double
y(0) = 3
y(1) = 2.4
y(2) = 1.7
y(3) = 1.4
y(4) = 0.7

' Calling the `CubicSplinePointwise' method. All other
' parameter values are being written here. The result
' is stored as a return value for this function.
MyFunction = instance.CubicSplinePointwise(x, y, -0.6, -0.7, 1.2)

End Function

Table 4.2: The VBA code for a user-defined function in Excel

The complete source code of a function named MyFunction is shown in table 4.2. The
example calls the same method as the generic VBA example in section 4.1.10.

4.2.9 Insert the Function in your Worksheet

Switch back to the worksheet window and open the “Insert Function” window from the
Insert | Function... menu (see Fig. 4.10). From the dialog window, click the drop-down list
that lists all the categories, and select the category named “User Defined”, as shown in
figure 4.11.

The name of your function will appear in the list of user-defined functions. Select it
and click the OK button (Fig. 4.12). A window named “Function Arguments” will appear,
asking for values for the arguments. In case your function takes no arguments, as in our
example above, simply click OK, as shown in figure 4.13.

76

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.10: How to open the “Insert Function” window in Excel

Fig. 4.11: Selecting the “User Defined” category

The current cell value will contain the value of a formula, which calls the “MyFunction”
function with no parameters. The result of the formula, listed in the fx formula bar, will
be printed inside the cell, as shown in figure 4.14. You can change the formula directly
from the formula bar, or by opening again the “Insert Function” window.

You can also add a reference to the formula directly from the worksheet, by typing the
value of the formula directly into the cell, without opening the “Insert Function” window,

77

Programmer’s Guide for Microsoft Office Chapter 4

Fig. 4.12: Selecting the “MyFunction” user-defined function

Fig. 4.13: Inserting the “MyFunction” user-defined function into the worksheet

Fig. 4.14: The value returned by the “MyFunction” formula in an Excel worksheet

78

Programmer’s Guide for Microsoft Office Chapter 4

the same way you would call a standard Excel formula.

79

Chapter 5

Programmer’s Guide for Visual
Studio 6

This chapter is dedicated to Visual Studio 6 developers, programming with either or both of
the Visual Basic 6 and Visual C++ 6 languages. Using WebCab Portfolio from these languages
comes down to connecting to a COM server and making calls to it. The first section is for
Visual Basic 6 developers, while the second section is for Visual C++ 6 developers.

5.1 Developing with Visual Basic 6

This section describes the steps required to use this product from VB6. These steps are
always the same, irrespective of the type of project you are developing. In an example at
the end of this section, we also provide a generic Visual Basic example of how to connect
to our components from a “Standard EXE” Project.

Assuming you have already started a new project or opened an existing project, here
are the steps required to connect and use a WebCab Portfolio COM server:

1. Add a Reference to This Product

2. Declare a Class Instance Variable

3. Create a Class Instance

4. Call a Class Method

5.1.1 Add a Reference to This Product

Adding a reference to this product is required only once for every VB Project that uses
functionality provided by this product. This step will enable VB code auto-completion for
all business clases and methods that belong to this product, saving you time typing and
browsing the API Reference. Also, it will speed up all calls to this product’s methods,
increasing the overall performance of your project.

80

Programmer’s Guide for Visual Studio 6 Chapter 5

Fig. 5.1: Opening the “References” window in Visual Basic 6

To add a reference to this product, go to the Project | References... menu as shown in
Fig. 5.1 in order to open the “References” dialog window. Scroll down and select the entry
named WebCab Portfolio Demo from the list of available references in the dialog window
and then click OK. Figure 5.2 shows how to add a reference to WebCab Functions Demo.

5.1.2 Declare a Class Instance Variable

The API Reference for this product details all business classes, their methods and prop-
erties, and gives advice on how to use each of them. You can browse the API Reference
from the Start Menu at Programs | WebCab Components | Portfolio for .NET | COM | API
Reference. In order to call methods of a business class listed in the API Reference, you
need to create a variable to hold a reference to its instance.

Write a Dim statement to declare a variable of the same type as the business class that you
wish to make calls to. For example, if you wish to call methods belonging to a business
class named “Interpolation” and declare a variable of this type named instance, you would
write the following:

Dim instance As Interpolation

To avoid name clashing with other classes that may be named the same as the business
class you are instantiating, you can prefix the name of the business class with the name
VB6 assigns to the COM reference to this product. Assuming the name of this reference

81

Programmer’s Guide for Visual Studio 6 Chapter 5

Fig. 5.2: Selecting a reference to a WebCab product, here WebCab Functions

is WebCab_COM_FunctionsDemo, the complete business class name would be referenced as
follows:

Dim instance As WebCab_COM_FunctionsDemo.Interpolation

5.1.3 Create a Class Instance

In order to create an instance of a business class listed in the API Reference, you will have
to write code that connects to its corresponding COM server. Use the Set keyword in order
to assign the class instance to the variable you have declared in the previous step. The Set

keyword is required in class instance assignments, as omitting this keyword would result
in a run-time error. The reference assigned to this instance is created by writing the New

keyword, followed by the name of the same business class you used to declare the variable.

For example, assume you wish to create an instance of a business class named Inter-
polation, which is located in the WebCab Functions for .NET product. The following line
of code will create an instance of this class and assign it to the instance variable declared
in the step above:

Set instance = New Interpolation

82

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Visual Studio 6 Chapter 5

To avoid name clashing with other classes that may be named the same as the busi-
ness class you are instantiating, you would use the complete name of the business class, as
shown below:

Set instance = New WebCab_COM_FunctionsDemo.Interpolation

5.1.4 Call a Class Method

In order to call a method belonging to a business class for which you have created an
instance, you can use the name of the method as listed in the API Reference and append
it to the name of the variable that holds the class instance, the same way you would call
a method or property in Visual Basic. For example, in order to call a method named
MyMethod, you could write the following line of code:

result = instance.MyMethod (parameter-values)

where parameter-values are the ordered values of the parameters separated by a comma.
The actual type of these parameters and that of the results variable depends on the signa-
ture (i.e. the return type and parameter types) of the MyMethod method.

Remark For a more detailed Visual Basic example of how to invoke a method see the
following section, 5.2.

5.2 A specific Visual Basic Example

Within this section we provide an explicit example in Visual Basic 6 which calls the
MarkowitzReturn which belong to the EasyOptimal business class of the Portfolio Com-
ponent and returns the result within a message box. Though this example is written for
a particular method from within the Portfolio Component by applying the principles out
lined here you should be able to easily adopted this example to call any available method.
The MarkowitzReturn method takes five parameters: two double variables,two one-dimensional
arrays and one two-dimensional array. The return value is one-dimensional array contain-
ing the weights of the assets under consideration. You can use the code from the 5.2 table
by copy-pasting inside any of your subroutines or functions. In our example, we placed the
code inside the Form_Load subroutine, which is been triggered at the time the Application

Form is first started.

Structure of the Example

This particular example perform the following steps:

83

http://www.webcabcomponents.com/dotNET/dotnet/portfolio/API/COM/WebCab.COM.Finance.Portfolio.EasyOptimal.MarkowitzReturn.html
http://www.webcabcomponents.com/dotNET/dotnet/portfolio/API/COM/WebCab.COM.Finance.Portfolio.EasyOptimal.html
http://www.webcabcomponents.com/dotNET/dotnet/portfolio/API/COM/WebCab.COM.Finance.Portfolio.EasyOptimal.MarkowitzReturn.html

Programmer’s Guide for Visual Studio 6 Chapter 5

� Start Visual Basic Project - Within our examples we use a Form project in which
we illustrate the method call.

� Declaring an instance of the class - In order to use the methods from a given
class you must first create an instance of that class.

� Initializing the instance of the class

� Declaring the Parameters - Create the types which will be used within the method
call.

� Declaring the variable to hold the returned method result

� Invoke the Method

� Print the result within a message box

Remark: We assume that the Portfolio component has been registered and is available
within the Visual Basic project. For further details on how this is performed please see
the previous section.

Obtaining the Source code

We provide an implementation of this example with associated project files within the
directory:

home/Libraries/Client/Optimization/VBExamples/EasyOptimal

where home refers to the directory where the product is installed which will generally
be: C:/Program Files/WebCab Components/Portfolio for .NET

This folder can also be access via the START menu by selecting: START > Programs >

WebCab Components > Portfolio for .NET > .NET > Tools > Portfolio > VBExamples Custom

Example

Within this folder you will find the following files:

1. EasyOptimal.frm - The Visual Basic source code file.

2. EasyOptimal.vbp - The Visual Basic project file.

3. EasyOptimal.vbw - The Visual Basic Project Workplace

In order to run this example you will need to:

1. Open VB Project file - Double click on the .vbp file which will open the project
within Visual Basic 6. We assume that you have Visual Basic 6 installed and that
Visual Basic project files (i.e. .vbs file) are associated with this IDE.

84

Programmer’s Guide for Visual Studio 6 Chapter 5

2. Add a WebCab Portfolio Reference - Select from the VB6 menu Project >

Reference which will bring up the ’References’ dialog box. With the text area list
please select the item ’WebCab Portfolio Demo’ and then click ’OK’.

3. Run the example - After the Component has been registered you are able to run
the examples by pressing F5.

Private Sub Form_Load()
' Here we demonstrate how the optimal portfolios can be constructed
' when the historical returns are known and the portfolio is determined
' by given the expected return and risk, in cases where the portfolio
' may or may not hold cash. We also select the optimal portfolio in
' accordance with the investors utility function.

' Declaring a instance of the class EasyOptimal
Dim instance colordarkblueAs EasyOptimal
' Instantiating the instance
Set instance = colordarkblueNew EasyOptimal

' The value of the expected return for which the optimal portfolio
' is sort.
Dim expectedReturns As Double
expectedReturn = 101

' The lower bounds on the asset weights are.
Dim lowerBounds(0 To 3) As Double
lowerBounds(0) = 0.1
lowerBounds(1) = 0.1
lowerBounds(2) = 0.1
lowerBounds(3) = 0.1

' The upper bounds on the asset weights are.
Dim upperBounds(0 To 3) As Double
upperBounds(0) = 0.5
upperBounds(1) = 0.5
upperBounds(2) = 0.5
upperBounds(3) = 0.5

' Historical Values Used
' We are able to construct portfolios from four assets with the
' following historical returns over the last 4 months:
' 1st Asset: 102, 101, 99, 101
' 2nd Asset: 100, 103, 99, 101
' 3rd Asset: 100, 99, 103, 101

85

Programmer’s Guide for Visual Studio 6 Chapter 5

' 4th Asset: 101, 101, 102, 101
Dim historicalReturns(0 To 3, 0 To 3) As Double

historicalReturns(0, 0) = 102
historicalReturns(0, 1) = 101
historicalReturns(0, 2) = 99
historicalReturns(0, 3) = 101
historicalReturns(1, 0) = 100
historicalReturns(1, 1) = 103
historicalReturns(1, 2) = 99
historicalReturns(1, 3) = 101
historicalReturns(2, 0) = 100
historicalReturns(2, 1) = 99
historicalReturns(2, 2) = 103
historicalReturns(2, 3) = 101
historicalReturns(3, 0) = 101
historicalReturns(3, 1) = 101
historicalReturns(3, 2) = 102
historicalReturns(3, 3) = 101

' The precision used but the algorithm.
Dim precision As Double
precision = 0.000000000001

' Here we construct the optimal portfolio which can be constructed from
' Equity Assets only where the weight of each asset lies within the
' range [0.1, 0.5],which has an expected return of 101.
weights = instance.MarkowitzReturn(expectedReturn, lowerBounds,_

upperBounds, historicalReturns, precision)

' These four lines just print our the result.
MsgBox "The weights of the first asset in the optimal portfolio is:" _

& weights(0)
MsgBox "The weights of the second asset in the optimal portfolio is:" _

& weights(1)
MsgBox "The weights of the third asset in the optimal portfolio is:" _

& weights(2)
MsgBox "The weights of the fourth asset in the optimal portfolio is:" _

& weights(3)
End Sub

5.2.A specific Visual Basic client example using EasyOptimal class

86

Programmer’s Guide for Visual Studio 6 Chapter 5

5.3 Developing with Visual C++ 6

Using this product from Visual C++ 6 involves two major steps: importing the Type
Library for this product and passing parameters to the COM methods according to COM
standards. All the other steps are rather straightforward and involve basic C++ code
writing:

The steps are as follows:

1. Open a New or Existing Project

2. Add All COM Specific ‘include’ Declarations

3. Import the Type Library for this Product

4. Call “CoInitialize”

5. Connect to a COM Server

6. Declare the Parameter Types and Values

7. Declare the Return Type

8. Call the Method

9. Call “CoUninitialize”

5.3.1 Open a New or Existing Project

You can start a new Visual C++ Project by going to the File | New... menu (see Fig. 5.3),
which will bring up the “New” dialog window. From this window, choose the “Projects”
tab and select the Win32 Console Application. Type in the name of your project in the
Project name text box (for example, Project1) and click OK, as shown in Fig. 5.4.

In the next window, select “A simple application” (see Fig. 5.5), click the Finish but-
ton, and click OK in the next window as well. From the left hand side of the screen, switch
to “FileView” and select the .cpp file with the same name as your project – as seen in Fig.
5.6. Note that the source code snippets in this section apply both to a new project and to
one of your existing projects.

87

Programmer’s Guide for Visual Studio 6 Chapter 5

Fig. 5.3: Starting a new project

88

Programmer’s Guide for Visual Studio 6 Chapter 5

Fig. 5.4: Starting a Console Application named “Project1”

89

Programmer’s Guide for Visual Studio 6 Chapter 5

Fig. 5.5: Creating a simple Console Application

90

Programmer’s Guide for Visual Studio 6 Chapter 5

Fig. 5.6: Location of the main C++ source code file, Project1.cpp

5.3.2 Add All COM Specific ‘include’ Declarations

COM specific calls will require that the header file objbase.h is included within your project.
This header offers functionality to enable C++ to interoperate with COM servers. To in-
clude this header file within your project you will need to add at the top of your main
source code file the following line:

#include "objbase.h"

5.3.3 Call “CoInitialize”

In order to allow Visual C++ clients to connect to a COM server, you need to make a call
to a function named CoInitialize, which belongs to the objbase.h header file, mentioned
above. The call to the function must be made as shown below:

CoInitialize(NULL);

91

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_36qt.asp

Programmer’s Guide for Visual Studio 6 Chapter 5

5.3.4 Import the Type Library for this Product

The name of all COM interfaces and their methods are described by a Type Library file
with a .tlb extension. These methods are automatically exposed to your Visual C++ 6
client by the IDE, if you import this .tlb file into your project.

In order to import the Type Library for this product, add an #import declaration (right
after the #include declarations in your main source code file) followed by the complete path
to the COM .tlb file, which is located in the COM Libraries subdirectory of the instalation
path for this product. The default installation path for users with Administrator privileges
is C:\Program Files\WebCab Components\Portfolio for .NET, while the default installa-
tion path for a user without Administrator privileges is C:\Documents and Settings\User-
Name\Local Settings\Application Data\WebCab Components\Portfolio for .NET.

If you add no_namespace at the end of the #import statement, the COM interfaces will
be placed within the default namespace, so you can access them directly without prefixing
them with the namespace name.

For example, if you installed with Administrator privileges, you can import the Type
Library for this product by writing the following statement:

#import "C:\Program Files\WebCab Components\Portfolio for .NET\
\COM Libraries\WebCab.COM.PortfolioDemo.tlb" no_namespace

If you omit the no_namespace parameter, the COM methods will be exposed as part of
a namespace called WebCab_COM_PortfolioDemo.

5.3.5 Connect to a COM Server

For every COM server described in the COM API Reference, the previous step defines a
type with the same name prefixed by “COM_” and followed by “Ptr”. Declare a variable of
this type and invoke its method named CreateInstance with the GUID of the COM server
itself as a parameter.

For example, in order to connect to the Interpolation COM server, part of the WebCab
Functions for .NET product, you would write the following C++ code:

COM_InterpolationPtr instance = NULL
instance.CreateInstance(__uuidof(Interpolation));

The variable named “instance” will hold the connection to the “Interpolation” COM server
in all subsequent calls.

92

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Visual Studio 6 Chapter 5

5.3.6 Declare the Parameter Types and Values

Passing non-array parameters to the COM methods is as straightforward as passing pa-
rameters to a C++ method. You can declare a parameter to hold the value, pass the value
directly, or pass the result of another method call.

When it comes to passing one-dimensional or two-dimensional arrays as parameters to
COM methods, you will need to perform some additional COM specific steps. First of all,
all COM arrays are typed as SAFEARRAY. The SAFEARRAY type holds a pointer to a standard
C++ array, but has some extra fields that describe the type of the array, its number of
dimensions, and most importantly its lower and upper bounds. Handling arrays of this
type can be done fairly easy using standard SAFEARRAY manipulation functions, such as
SafeArrayCreate, SafeArrayRedim, and SafeArrayDestroy.

You will need to pass either one-dimensional or two-dimensional safe arrays to any of
the COM methods within this product. Here is how you can accomplish this from Visual
C++ 6:

� Declaring a One-Dimensional Safe Array
Use the SafeArrayCreateVector function to create a one-dimensional safe array,
by passing the element type, the lower bound and the number of elements the array
has. The element type is one of the types declared by the VARENUM enumeration type.
Of the most common types, you will be using the VT_R8 constant (corresponding to
the double type in the API Reference), VT_I4 (corresponding to the integer type),
VT_DATE (the DateTime type), and VT_BOOL for boolean types.

After making the call to this function, you will need to copy the values referenced by
a C++ one-dimensional array to the memory location referenced by the pvData field
of the safe array structure. This C++ array must hold the values that you wish to
send across to the COM method as a parameter value.

For example, in order to create a one-dimensional array of 4 double elements, here
is how you could define the corresponding safe array and the underlying C++ one-
dimensional array:

int noElements = 4;
double pvData_myOneDimensionalArray[] = {1, 2, 3, 4};
SAFEARRAY *psa_myOneDimensionalArray = SafeArrayCreateVector(

VT_R8, 0, noElements);
memcpy(psa_myOneDimensionalArray->pvData,

pvData_myOneDimensionalArray, noElements * sizeof(double));

� Declaring a Two-Dimensional Safe Array
In order to declare a two-dimensional array, you will first declare the correspond-

93

Programmer’s Guide for Visual Studio 6 Chapter 5

ing C++ two-dimensional array. However, the C++ array needs to be transposed,
such that the number of rows becomes the number of columns and vice-versa. This
is due to the transposed memory layout of safe arrays, opposed to that of C++ arrays.

For example, if to declare an n by m safe array, you will need to declare an m
by n C++ array, and lay the elements in this reversed order.

Also, you will need to make sure that the number of elements of all sub-arrays is
the same, because the two-dimensional safe array is a rectangular array, which as-
sumes fixed number of elements on each dimension.

The safe array structure can be initialized using the SafeArrayCreate function,
which takes the following parameters: the element type, the number of dimensions
(two in our case), and the lower bound and number of elements on each dimension.
The lower bound and number of elements is declared using a SAFEARRAYBOUND struc-
ture, one for every dimension.

Assuming a two-dimensional array of 2 by 4 double elements, its corresponding safe
array and C++ two-dimensional array must be 4 by 2 and its elements must be laid
out as follows:

int noRows = 2;
int noColumns = 4;
double pvData_myTwoDimensionalArray[4][2] = {

{ 1, 5 },
{ 2, 6 },
{ 3, 7 },
{ 4, 8 },

};

SAFEARRAYBOUND myTwoDimensionalArrayBounds[2];
myTwoDimensionalArrayBounds[0].lLbound = 0;
myTwoDimensionalArrayBounds[0].cElements = noRows;
myTwoDimensionalArrayBounds[1].lLbound = 0;
myTwoDimensionalArrayBounds[1].cElements = noColumns;

SAFEARRAY *psa_myTwoDimensionalArray = SafeArrayCreate(
VT_R8, 2, myTwoDimensionalArrayBounds);

memcpy(psa_myTwoDimensionalArray->pvData,
pvData_myTwoDimensionalArray, noRows * noColumns *

sizeof(double));

The actual values in the safe array are { 1, 2, 3, 4 } on the first row, and { 5, 6,

7, 8 } on the second row.

94

Programmer’s Guide for Visual Studio 6 Chapter 5

Before sending a safe array to a COM method, you will also need to perform one last step
– wrap it within a VARIANT type. The VARIANT structure is a generic type that can wrap
around any other COM type. Define a variable of type VARIANT, and use its fields to specify
the type of the safe array and the reference to the safe array structure. To describe the
type of the safe array, use the VT_ARRAY constant and the constant corresponding to the
element type of the array.

For example, a variant corresponding to the two dimensional safe array declared above
will look as follows:

VARIANT myTwoDimensionalArray;
myTwoDimensionalArray.vt = VT_ARRAY | VT_R8;
myTwoDimensionalArray.parray = psa_myTwoDimensionalArray;

A complete list of VARENUM constants corresponding to all COM types that might be re-
quired by this product can be found at this MSDN link.

5.3.7 Declare the Return Type

COM methods that return arrays require special attention. Instead of declaring a C++
array pointer, you will need to declare a pointer to a SAFEARRAY structure, and assign to
it the result of the method call. Here is how you would declare a variable to hold a safe
array returned by a COM method:

SAFEARRAY *arrayResult;

COM methods that return non-array types can be used like regular C++ methods, by
declaring a variable of the corresponding type and assigning to it the result of the method
call.

5.3.8 Call the Method

You can call a COM method by using the variable that holds the connection to the COM
server and the name of the method, as listed in the COM API Reference. For example,
assuming you wish to call a method named ComMethod, which takes two double values for
parameters and returns a third double value, here is how you could perform this call from
C++:

double result = instance->ComMethod (10, 20);

Any other COM method calls can be made the same way, by using a different method

95

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemruntimeinteropservicesvarenumclasstopic.asp?frame=true

Programmer’s Guide for Visual Studio 6 Chapter 5

SAFEARRAY *twoDimArray;
// A fictive call is made to the COM method
twoDimArray = instance->ComMethod (paramValue1, paramValue2 etc.);

// We read off the lower and upper bounds on each dimension
long l1, u1, l2, u2;
SafeArrayGetLBound(twoDimArray, 1, &l1);
SafeArrayGetUBound(twoDimArray, 1, &u1);
SafeArrayGetLBound(twoDimArray, 2, &l2);
SafeArrayGetUBound(twoDimArray, 2, &u2);

// We read through all elements and print them to the screen
long indices[2]; // the indices for every dimension
for (indices[0] = l1; indices[0] <= u1; indices[0]++) {

for (indices[1] = l2; indices[1] <= u2; indices[1]++) {
double element;
SafeArrayGetElement(twoDimArray, indices, &element);
printf ("twoDimArray[%d,%d] = %lf", indices[0], indices[1],

element);
}

}

Table 5.1: Handling a two-dimensional safe array in C++

name, a different set of parameter values, and maybe a different return type.

Special care must be taken when processing the result of COM methods, which return
a one or two-dimensional array. Since, as described above in section 5.3.7, the type of the
variable to hold the result is a pointer to a SAFEARRAY structure, you will need to use safe
array specific methods, in order to inspect all element values, and reuse them in C++.

Table 5.1 gives an example of how to handle a two-dimensional array, covering most of
the operations you are likely to perform in your C++ applications with safe arrays re-
turned by COM methods.

5.3.9 Call “CoUninitialize”

In order to free generic COM related resources held by a C++ client, you must make a
call to the CoUninitialize function. The call to this function can be made right before the
end of your application or when your client no longer requires to use COM resources. The
line of code which releases all COM resources is:

CoUninitialize();

96

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_7vqd.asp

Programmer’s Guide for Visual Studio 6 Chapter 5

5.3.10 A Generic Visual C++ Example

In this section we provide a generic Visual C++ example of a simple Console Application,
which connects to one of our business classes, invokes one of its methods and prints the re-
sult in a window. This source code example works with a new Win32 Console Application,
which can be created as described in section 5.3.1. Since this example’s structure in not
specific to the method being invoked, you may adapt this example to whatever business
class, product, and method you wish to call.

This C++ application calls a method named RelativeToAbsolute, belonging to the As-
setParameters business class in the WebCab Portfolio for .NET product. This method
takes one two-dimensional double array parameter and returns another two-dimensional
double array.

97

http://webcabcomponents.com/dotNET/dotnet/portfolio/API/NET/WebCab.Libraries.Finance.Portfolio.AssetParameters.RelativeToAbsolute.html
http://webcabcomponents.com/dotNET/dotnet/portfolio/

Programmer’s Guide for Visual Studio 6 Chapter 5

// Project1.cpp, a Simple Win32 Console Application
//

#include "stdafx.h"
#include "objbase.h"
#include "stdio.h"

// Adding a reference to the Portfolio COM Type Library
#import "C:\Program Files\WebCab Components\Portfolio for .NET\
\COM Libraries\WebCab.COM.PortfolioDemo.tlb" no_namespace

int main(int argc, char* argv[])
{

CoInitialize(NULL); // Enable C++ to COM interoperability

/*
* Declare a variable to hold the connection to the
* `AssetParameters' COM server and establish
* the connection using its GUID.
*/

COM_AssetParametersPtr instance = NULL;
instance.CreateInstance(__uuidof(AssetParameters));

int noRows = 2;
int noColumns = 4;
// Reverse the dimensions for the C++ array, by declaring first
// the number of columns and then the number of rows.
double pvData_absoluteValues[4][2] = {

{ 100, 140 },
{ 120, 135 },
{ 125, 135 },
{ 115, 140 },

};
SAFEARRAYBOUND bounds[2];
bounds[0].lLbound = 0;
bounds[0].cElements = noRows;
bounds[1].lLbound = 0;
bounds[1].cElements = noColumns;
SAFEARRAY *psa_absoluteValues = SafeArrayCreate(VT_R8, 2, bounds);
memcpy(psa_absoluteValues->pvData,

pvData_absoluteValues, noRows * noColumns * sizeof(double);

Table 5.2: Generic VC++ example (continued on the next page)

98

Programmer’s Guide for Visual Studio 6 Chapter 5

VARIANT absoluteValues;
absoluteValues.vt = VT_ARRAY | VT_R8;
absoluteValues.parray = psa_absoluteValues;

// Call the `AbsoluteToRelative' COM method
SAFEARRAY *relativeValues;
relativeValues = instance->AbsoluteToRelative(absoluteValues);

// Print the result inside a MessageBox
char text[200] = "";
long indices[2];
long l1, u1, l2, u2;
SafeArrayGetLBound(relativeValues, 1, &l1);
SafeArrayGetUBound(relativeValues, 1, &u1);
SafeArrayGetLBound(relativeValues, 2, &l2);
SafeArrayGetUBound(relativeValues, 2, &u2);
for (indices[0] = l1; indices[0] <= u1; indices[0]++) {

sprintf (text, "%s{ ", text);
for (indices[1] = l2; indices[1] <= u2; indices[1]++) {

double element;
SafeArrayGetElement(relativeValues, indices, &element);
sprintf (text, "%s%lf ", text, element);

}
sprintf (text, "%s}\n", text);

}

MessageBox(NULL, text, "The Relative Values", MB_OK);

CoUninitialize(); // Free all COM specific resources
return 0;

}

Table 5.3: Generic VC++ example (continued)

99

Chapter 6

Programmer’s Guide for Borland
C++ Builder

This chapter contains information concerning the use of this Component product from Borland’s
C++ Builder product lines; include Borland C++ 2005, Borland C++BuilderX and Borland
C++Builder; on the Windows development platform. The principles and code examples pro-
vided here can be applied verbatim in order to use this component with the C++ language
on the Windows development platform. Though the use of the different IDE products lines
will differ slightly, the same Windows client code can be used verbatim within any of the C++
Builder product lines.

6.1 Developing with Borland C++ Builder

In order to connect and make calls to our COM servers from Borland C++ Builder, you
will need to write late-binding code.

The steps are as follows:

1. Open a New or Existing Project

2. Add all COM Specific ‘Include’ Declarations

3. Call “CoInitialize”

4. Create a Class Instance

5. Obtain a Method ID

6. Declare the Parameter Values and Types

7. Declare the Return Type

8. Call the Method

9. Call “CoUninitialize”

100

Programmer’s Guide for Borland C++ Builder Chapter 6

Fig. 6.1: Starting a new project

6.1.1 Open a New or Existing Project

You can start a new Borland C++ Builder Project by going to the File | New... menu (see
Fig. 6.1), which will bring up the “Object Gallery” dialog window. From this window,
choose the “Project” left-hand item, select the New Console project and click OK, as shown
in Fig. 6.2.

Type in the name of your project in the next dialog window and click Next (see fig. 6.3). In
the next window (figure 6.4) simply click Next, and in the last window, select the checkbox
next to the untitled entry and click the Finish button, as shown in figure 6.5.

101

Programmer’s Guide for Borland C++ Builder Chapter 6

Fig. 6.2: Starting a Console Application

Fig. 6.3: Choosing a name for a new Borland C++ Console Application

102

Programmer’s Guide for Borland C++ Builder Chapter 6

Fig. 6.4: Selecting platforms and tools sets for a new Borland C++ Console Application

6.1.2 Add all COM Specific ‘Include’ Declarations

COM specific calls will require that the header file objbase.h is included within your project.
This header offers functionality to enable C++ to interoperate with COM servers. To in-
clude this header file within your project you will need to add at the top of your main
source code file the following line:

#include "objbase.h"

6.1.3 Call “CoInitialize”

In order to allow Borland C++ Builder clients to connect to a COM server, you need to
make a call to a function named CoInitialize, which belongs to the objbase.h header file,
mentioned above. The call to the function must be made as shown below:

CoInitialize(NULL);

103

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_36qt.asp

Programmer’s Guide for Borland C++ Builder Chapter 6

Fig. 6.5: Specifying the project files for a new Borland C++ Console Application

6.1.4 Create a Class Instance

In order to create an instance of a WebCab Portfolio business class, you will need to provide
the full name (i.e. the ProgId) of the business class, as declared within the API Reference.
The full name of a business class contains the namespace, followed by a period and the
name of the class itself.

The C++ code below returns an instance of the Interpolation business class, located inside
WebCab Functions for .NET. Its namespace is WebCab.COM.Math.Interpolation, meaning
its full name is WebCab.COM.Math.Interpolation.Interpolation. You can easily adapt the
code below to create an instance of another business class, by replacing the ProgId below
with the full name of the class you wish to use.

104

http://msdn.microsoft.com/library/en-us/com/htm/registry_0795.asp
http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Borland C++ Builder Chapter 6

CLSID clsid;
CLSIDFromProgID(OLESTR(// Get the CLSID of the ProgId

"WebCab.COM.Math.Interpolation.Interpolation"),
&clsid);

LPDISPATCH instance = NULL; // the COM `instance'
LPUNKNOWN punk = NULL;

CoCreateInstance (clsid, NULL, CLSCTX_INPROC_SERVER,
IID_IUnknown, (void**) &punk);

punk->QueryInterface(IID_IDispatch, (void**) &instance);
punk->Release();

The variable named “instance” will hold the connection to the “Interpolation” COM server.

6.1.5 Obtain a Method ID

In order to call a method using the instance created above, you will need to obtain a ref-
erence to its ID. Use the code below to obtain the ID of the method you wish to call, by
replacing the generic method name “MyMethod” with the name of the method you wish
to call. The variable “methodID” will hold the reference to the method.

DISPID methodID; // The ID of the method

/*
* Replace `MyMethod ' with the name of the method you wish to call
*/

wchar_t *methodName = L"MyMethod";
instance->GetIDsOfNames(IID_NULL, &methodName, 1, LOCALE_USER_DEFAULT,

&methodID);

6.1.6 Declare the Parameter Values and Types

For every parameter, you will need to declare a variable of type VARIANT, whose type will
be set to the type of the parameter, and its value will correspond to the value you wish
the parameter to take. The code listed in table 6.1 shows how to declare the parameter
values for a method that takes two double parameters.

For information about how to set other types of parameters, such as integers, boolean
values, and arrays; we refer the reader to this ‘IDispatch Data Types and Structures’
article on Microsoft’s MSDN site.

105

http://msdn.microsoft.com/library/en-us/automat/htm/chap6_7zdz.asp
http://msdn.microsoft.com/library/en-us/automat/htm/chap6_7zdz.asp

Programmer’s Guide for Borland C++ Builder Chapter 6

int noParameters = 2; // the number of parameters
// 1st parameter
VARIANTARG parameter1;
parameter1.vt = VT_R8; // 8-bit real type
parameter1.dblVal = 100.0; // 100.0
// 2nd parameter
VARIANTARG parameter2;
parameter2.vt = VT_R8; // 8-bit real type
parameter2.dblVal = 95.0; // 95.0

DISPPARAMS parameters; // the list of parameters
memset(¶meters, 0, sizeof(DISPPARAMS));
parameters.cArgs = noParameters;
parameters.rgvarg = new VARIANTARG[noParameters];
memset(parameters.rgvarg, 0, sizeof(VARIANT) * noParameters);

// Add the parameters in reverse order
parameters.rgvarg[1] = parameter1;
parameters.rgvarg[0] = parameter2;

Table 6.1: Declaring parameter types and values for a COM method

6.1.7 Declare the Return Type

A VARIANT variable needs to be declared for the return value of the method as well. The
type of the VARIANT will be automatically set by the method invocation, so you will only
need to initialize its type to VT_EMPTY by calling the VariantInit function.

VARIANTARG result; // Variable to hold the result
VariantInit(&result);

6.1.8 Call the Method

Calling the method comes down to using all the variables declared in the previous steps (the
instance, the method ID, the parameters, and the return value) in one call, as shown below:

// Call the underlying method
instance->Invoke(methodID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, ¶meters, &result, 0, NULL);

The return value of the method is stored in the result variable, in the field corresponding
to the method’s return type. For example, if the method returns a double, you will write
the following code in order to store the result in a double variable named “resultAsDouble”:

106

Programmer’s Guide for Borland C++ Builder Chapter 6

// Get the result as double
double resultAsDouble = result.dblVal;

6.1.9 Call “CoUninitialize”

In order to free generic COM related resources held by a C++ client, you must make a
call to the CoUninitialize function. The call to this function can be made right before the
end of your application or when your client no longer requires to use COM resources. The
line of code which releases all COM resources is:

CoUninitialize();

6.1.10 A Generic Borland C++ Builder Example

In this section (tables 6.2 and 6.3) we provide a generic Borland C++ Builder example of
a simple Console Application, which connects to one of our business classes, invokes one
of its methods and prints the result in a window. The source code below works with a
new Win32 Console Application, which can be created as described in section 6.1.1. Since
this example’s structure in not specific to the method being invoked, you may adapt this
example to whatever business class, product, and method you wish to call.

This C++ application calls a method named Kairi, belonging to the MovingAverage busi-
ness class in the WebCab Technical Analysis for .NET product. This method takes two
double parameters and returns a double value.

107

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_7vqd.asp
http://www.webcabcomponents.com/dotNET/dotnet/ta/API/COM/WebCab.COM.Finance.Trading.Indicators.MovingAverage.Kairi.html
http://webcabcomponents.com/dotNET/dotnet/ta/demo.shtml

Programmer’s Guide for Borland C++ Builder Chapter 6

// Project1.cpp, a Simple Win32 Console Application
//

#include "objbase.h"
#include "stdio.h"

int main(int argc, char* argv[])
{

CoInitialize(NULL); // Enable C++ to COM interoperability

CLSID clsid;
CLSIDFromProgID(OLESTR(// Get the CLSID of the ProgId

"WebCab.COM.Finance.Trading.Indicators.MovingAverage"),
&clsid);

LPDISPATCH instance = NULL; // the COM `instance'
LPUNKNOWN punk = NULL;

CoCreateInstance (clsid, NULL, CLSCTX_INPROC_SERVER,
IID_IUnknown, (void**) &punk);

punk->QueryInterface(IID_IDispatch, (void**) &instance);
punk->Release();

DISPID methodID; // The ID of the method

// The method name is `Kairi'
wchar_t *methodName = L"Kairi";
instance->GetIDsOfNames(IID_NULL, &methodName, 1, LOCALE_USER_DEFAULT,

&methodID);

int noParameters = 2; // the number of parameters
// 1st parameter
VARIANTARG parameter1;
parameter1.vt = VT_R8; // 8-bit real type
parameter1.dblVal = 100.0; // 100.0
// 2nd parameter
VARIANTARG parameter2;
parameter2.vt = VT_R8; // 8-bit real type
parameter2.dblVal = 95.0; // 95.0

Table 6.2: Generic VC++ example – Part 1

108

Programmer’s Guide for Borland C++ Builder Chapter 6

DISPPARAMS parameters; // the list of parameters
memset(¶meters, 0, sizeof(DISPPARAMS));
parameters.cArgs = noParameters;
parameters.rgvarg = new VARIANTARG[noParameters];
memset(parameters.rgvarg, 0, sizeof(VARIANT) * noParameters);

// Add the parameters in reverse order
parameters.rgvarg[1] = parameter1;
parameters.rgvarg[0] = parameter2;

VARIANTARG result; // Variable to hold the result
VariantInit(&result);

// Call the `Kairi' method
instance->Invoke(methodID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, ¶meters, &result, 0, NULL);
delete [] parameters.rgvarg;

// Get the result as double
double percentage = result.dblVal;
// Print the result inside a MessageBox
char text[200];
sprintf(text, "The percentage is %lf", percentage);
MessageBox(NULL, text, "Method result", MB_OK);

CoUninitialize(); // Free all COM specific resources
return 0;

}

Table 6.3: Generic VC++ example – Part 2

109

Chapter 7

Programmer’s Guide for .NET

This chapter describes development techniques for various business solutions that make use
of the functionality provided by our .NET Service. We analyze both standard and enterprise
solutions, including stand-alone applications, ASP.NET pages, and XML Web services.

7.1 Developing with .NET Class Libraries

The .NET Edition of this product offers core-level functionality to the .NET developer
allowing the implementation of fully personalized components and applications for specific
business problems on a variety of deployment environments. Irrespective of the complexity
of the project a programmer may be working on, this .NET Service can be integrated in
an equally straightforward manner by providing the needed functionality in a compact and
precise way.

The Portfolio for .NET v5.0 component comes as a collection of DLL files. Each DLL
is a packed collection of classes that provide the functionality offered by this .NET Service
as documented inside the API reference directory of this package. Depending on the type
of .NET solution you are developing, you will be using these DLL files in a specific way.
Once you have chosen a particular implementation of a deployment framework, the struc-
ture of your source code will need to adapt accordingly. In the following discussion we
describe several basic .NET implementation examples that can be used to make use of our
product’s functionality.

7.1.1 Stand-alone C# .NET Applications

A stand-alone C# application is a C# class which acts as a client for the deployed .NET
components (i.e. DLLs). The source code listed below defines a standard stand-alone
application skeleton which communicates with a class within a .NET Component. By cre-
ating an instance, calling a method, sending in a set of parameters and then retrieving the
returned result of the method call. As soon as the method call has gone through success-
fully the method continues by displaying its result on the screen.

110

Programmer’s Guide for .NET Chapter 7

/*

* The class we are is located inside the WebCab.Libraries.NetService

* namespace.
*/

using System;

using WebCab.Libraries.NetService;

public class StandAloneExample {

public static void Main () {

/*

* Creates an instance of the NetClass class
*/

NetClass instance = new NetClass ();

/*

* Defines the method parameter.
*/

double parameter = 25;

/*

* Invokes a method with the specified parameter
* and puts the result in the result variable.
*/

double result = instance.ComputeResult (parameter);

/*

* Prints out the retrieved result.
*/

Console.WriteLine ("Method ’ComputeResult’ in class NetClass

returned " + result + ".");

}

}

If the method ComputeResult of the NetClass class returned 100, this stand-alone appli-
cation would print the following:

Method ’ComputeResult’ in class NetClass returned 100.

111

Programmer’s Guide for .NET Chapter 7

7.2 Developing with XML Web Services

This component has been XML Web service enabled and the relevant deployment files can
be deployed which means that you may deploy the Application as a web service and make
the methods contained therein available as XML Web service methods.

7.2.1 Deploying the XML Web Services

Using Windows XP with .NET Framework and IIS installed

In order to deploy this .NET Service as an XML Web service you will need to go through
the following steps:

� Copy DLL Files - copy the DLL files provide into the bin directory of the IIS servers
directory. On the standard install this is located at:

C:\Inetpub\wwwroot\bin

� Copy asmx Files - now copy the asmx files included into the folder:

C:\Inetpub\wwwroot\

Now the web service can be accessed through the URL:

http://localhost/WebServices/filename.asmx

Remarks

1. If you prefer to change the URL in which the XML Web service can be accessed
then just create and then copy the asmx files into another subfolder of the ‘wwwroot’
directory, in which case the corresponding URL of the web service will corresponding
change.

2. In order to copy the installation files to your IIS location you will need to have
appropriate read and write access to the folder under question.

7.2.2 Writing XML Web Service Clients

The building of an XML Web service client will require the following steps:

� Create a proxy class for the XML Web service.

112

Programmer’s Guide for .NET Chapter 7

� Reference the proxy class in the client code.

� Create an instance of the proxy class in the client code.

� Call the method on the proxy class corresponding to the XML Web service method
you want to communicate with.

For most clients, these steps differ only on how the proxy class is referenced and how the
XML Web services are deployed.

7.2.3 Writing Console XML Web Service Clients

An XML Web service client may take a number of forms including a console application,
ASP.NET page, HTML page, Windows Form, Java Applet/Frame and any other XML
Web service enabled client technology.

Here in order to illustrate the core step involved in making a client we describe the steps
required to build a console application. Creating other types of clients will involve similar
steps. We assume that you have the .NET Framework installed (on the client and server)
and that the IIS server has (been installed and) started on the server.

To create a console XML Web service client application you must:

� Deploy the DLL provided into a bin which you need to create somewhere in a subdi-
rectory of the IIS web server you plan to use. The default location for this web server
on your local machine is ‘C:\Inetpub\wwwroot’. The DDL is the required XML Web
service .NET assembly file.

� Deploy the web service descriptor ‘Classname.asmx’ provided, into a IIS web-server
subdirectory.1 Note that we will assume below that the URL of the deployed Class-
name.asmx file is:

http://yourserver/Webservices/Classname.asmx

� Create a XML Web service proxy by using the WDLS command line tool. Enter a
DOS prompt in the directory where you intend to (develop and) run your console
application from and type at the command line:

Wsdl.exe http://yourserver/Webservices/Classname.asmx

1The purpose of the asmx file is to tell the server that the XML Web service exists so that it may start
searching for the relevant classes within the DLL files in the bin directory. Hence, the asmx file is very
simple and consists of the one line:

<%@ WebService language="C# " class="Classname" %>

and is saved as a TXT file with an extension .asmx.

113

Programmer’s Guide for .NET Chapter 7

That is ‘Wsdl’ followed by the URL of the asmx file for the XML Web service. This
utility will generate a C# file which will be written to the present directory (which
should be the clients directory)2. The WSDL file is an interface (in OOP terminology)
or proxy for the DLL C# implementation of the XML Web service.

� Write a console application in the standard way and instantiate the WebService meth-
ods (as if the DLL is hosting locally) using the WSDL proxy. See the below template:

using System;

public class ClassnameClient {
/// <remarks>

/// The Main method ensures that the console will run.

/// </remarks>

static void Main() {
/*

* We instantiate the "object" represented by

* the proxy class.

*/

Classname classnameObject = new Classname();

/*

* We invoke the ‘Compose’ method of the

* Classname XML Web service

*/

Console.WriteLine("XML Web service method Compose

applied to 7.0 and 3.9 is " +

classnameObject.Compose(7, 3.9));

}
}

2WSDL is a standard by which all XML Web services are described. See http://www.w3.org/TR/wsdl

114

http://www.w3.org/TR/wsdl

Programmer’s Guide for .NET Chapter 7

7.2.4 Importing Web services into Visual Studio .NET projects

Fig: Adding a Web reference.

Fig: Adding a Web reference.

115

Programmer’s Guide for .NET Chapter 7

7.3 Connecting to a Database with our .NET Libraries

7.3.1 Overview

Most of the financial and mathematical functionality provided by this .NET Service is in-
tended for use within a multi-tier environment where the back-end role is taken by an SQL
Database server. By packaging this functionality within .NET components such as XML
Web services and .NET Class Libraries we separate the business logic from the database
logic, allowing you to customize the way you access the database and the way the retrieved
data is sent to the business methods.

In order to assist you in developing DBMS based .NET solutions, we provide the ADO
Mediator as a standardized way of using our .NET components with an SQL Database
server. The ADO Mediator is also a .NET component, which sits on the same level as the
other financial and mathematical .NET components and is a seamlessly integrated compo-
nent of this .NET Service. While reducing the amount of DBMS code you have to type, it
allows you to concentrate on the SQL queries and procedure calls to the Database server
and map the stored data directly to the business methods of this .NET Service.

The ADO Mediator’s functionality has been enabled for use with the following modules
contained within the WebCab Portfolio for .NET v5.0:

� The “Portfolio” Module

7.3.2 The ADO Mediator

There is one ADOMediator class for every module in this .NET Service. You will use the
corresponding ADOMediator class for performing Database operations with classes of a cer-
tain module. The ADO Mediator class is located inside the ‘ADO’ subnamespace of its
corresponding module. For example if a module contains the:

WebCab.Libraries.Finance.Trading

namespace, its ADOMediator class will be found under:

WebCab.Libraries.Finance.Trading.ADO.ADOMediator.

Configuring the ADO Mediator

There are three steps to perform in order to start using an ADO Mediator class:

1. Specify the ADO.NET Driver
The constructor accepts an input connection and an output connection. There is no
restriction that you should provide both an input and an output connection. You
may choose to read data and display it inside your Application, compute data and
write it into the database, or read and write to and from the database, and specify
only the input or output database connection.

116

Programmer’s Guide for .NET Chapter 7

Connecting to your database requires an ADO.NET Driver. This driver is a .NET
class which is part of a DLL file provided by your Database vendor. You specify
the driver you wish to use by sending in to the ADOMediator constructor its run-time
type. That is, if your driver class name is System.Data.SqlClient.SqlConnection3,
its run-time type under C# is specified by typing inside your source code:

typeof (System.Data.SqlClient.SqlConnection)

2. Provide the input/output ConnectionString property
The ConnectionString property is a piece of text which describes the Database server
machine address, the credentials, and additional information required in order to
obtain access to certain parts of your Database server. This piece of text is always
documented by the provider of the ADO.NET Driver and should be used as such
when submitting it to an ADOMediator constructor. An example for the previous
ADO.NET SQL Server driver would be:

"Initial Catalog=Northwind;Data Source=localhost;Integrated Security=true;"

You may easily notice that the string above describes the machine name and the
initial catalog to connect to. The Integrated Security=true bit enables you to
connect to the SQL Server 2000 by using the current Windows login username and
password.

3. Assign a business .NET component
The previous two steps are part of creating an instance of an ADOMediator class and
taking care of the Database connections. This third step involves specifying the busi-
ness class belonging to this module which deals with the financial and mathematical
functionality. Choose a class of the corresponding module and assign an instance of
this class to the UnderlyingInstance property of the previously created ADOMediator

instance.

For example, if the name of the class you choose is TradingClass, you could write
the following C# code4:

TradingClass aTradingClassInstance = new TradingClass ();
adoInstance.UnderlyingInstance = aTradingClassInstance;

Using the ADO Mediator

Once these three steps have been performed, you may use the created ADOMediator instance
to perform Database related calculations using the assigned .NET business class. There

3The built-in ADO.NET driver class name for connecting to the MS SQL Server
4We assume adoInstance is the name of the previously created ADOMediator instance.

117

Programmer’s Guide for .NET Chapter 7

are several methods which you may use with your ADO Mediator instance. Some methods
allow you to read from the database and perform calculations for every retrieved row, and
then store the result in a .NET variable. Other methods allow you to specify the input
values and write the result in the database. There are also methods which allow you to
read the input parameters from the database and write the method results back into the
database in one go.

The basic methods of the ADO mediator are:

� Select Method - Allows you to retrieve the results of a method of your choice be-
longing to the underlying business class instance, applied to every row of an SQL
SELECT query.

� Update Method - Directly updates values inside your database, as returned by a
method belonging to the underlying business class instance.

� SelectAndUpdate Method - Allows you to combine the two methods mentioned above
by selecting the data, computing the results and writing it back to the database,
according to your own criteria.

A complete API reference for these methods is found inside the Documentation folder of
this pack. The Windows Installer (MSI) for this .NET Service has also created a short cut
to this documentation from the Start Menu.

How the ADO Mediator Works

The way the ADO Mediator processes requests from the client and transfers them to the
.NET components and the Database is shown in the diagram below.

118

Programmer’s Guide for .NET Chapter 7

Fig: This diagram describes how the ADO Mediator passes onto the Database and
the .NET components its client requests.

C# Source Code Example

The following C# source code makes use of the ADO Mediator’s functionality in order to
read and update the database according to a known algorithm. We use the standard SQL
Server ADO.NET Driver to connect to a fictitious table named TRADES, and invoke the
TradingMethod method of the TradingClass business class.

119

Programmer’s Guide for .NET Chapter 7

using System;
using System.Data.SqlClient;
using WebCab.Libraries.Finance.Trading;
using WebCab.Libraries.Finance.Trading.ADO;
...
try {
...
/*
* We specify the same driver and connection string for both the input and output
* connections to the SQL Server 2000 Database server.
*/

ADOMediator adoInstance = new ADOMediator (
typeof (SqlConnection), // Input

"Initial Catalog=Northwind;Data Source=localhost;Integrated Security=true;",
typeof (SqlConnection), // Output

"Initial Catalog=Northwind;Data Source=localhost;Integrated Security=true;");

/*
* We assign an instance of the TradingClass business class to the newly created
* instance of this ADO Mediator.
*/

adoInstance.UnderlyingInstance = new TradingClass ();

/*
* We invoke the SelectAndUpdate method which will populate the table according to
* the result of the method and the position of the input values in the database.
*/

adoInstance.SelectAndUpdate ("TradingMethod",
"SELECT C ID, SHARES, VALUE FROM TRADES", // Select
"UPDATE CUSTOMER SET MONEY=@MONEY WHERE C ID=@C ID", // Update
"@MONEY", // Maps the ‘TradingMethod’ method result to @MONEY
{new Object[] {"@C ID", "C ID"}}, // Maps C ID to @C ID
false); // True when updating with a stored procedure

}
catch (ADOMediatorException e) {
Console.WriteLine (e);

}

Using ADO Mediator with SQL Server 2000

The ADO Mediator instance above requires the same information as in the case of writing
your own ADO.NET source code. The difference lies in the fact that you do not have to
manually control the driver specific operations such as opening and closing a connection,
and only concentrate on your SQL queries and the functionality of our business classes.
You start by following the three steps mentioned above5 and continue by making calls to
any ADOMediator methods.

5Specifying the input and/or output ADO.NET drivers and their connection strings and assigning an
instance of the fictitious TradingClass business class.

120

Programmer’s Guide for .NET Chapter 7

As you may notice, the SelectAndUpdate method above follows a logical pattern of de-
scribing how the data should be read from the database, computed, and written back,
with special care to the use of named parameters. You do not require previous experience
in dealing with named parameters, as they are basically a way to substitute real values with
names inside SQL queries. You may have spotted the @MONEY and @C ID named parameters
in our UPDATE statement above. These named parameters will be replaced with real values,
taken either from the TradingMethod’s result, or directly from a column returned by the
SELECT query.

In our case, we replace @MONEY with the result of applying the TradingMethod method6

to the values of the SHARES and VALUE columns returned by the SELECT query. The sec-
ond named parameter (@C ID) is replaced directly by the value of the C ID column of the
SELECT query. For more information about named parameters you may wish to consult your
ADO.NET driver’s manual. Most special cases are related to the use of named parameters
and have been covered by the current version of the ADO Mediator.

7.4 Portfolio Methods Overview

This .NET Service offers portfolio analysis according to Markowitz and Capital Market
Theory. There are two main categories of methods which are provided within this .NET
Service:

� statistical parameter calculation

� portfolio analysis

The values returned from the first category are used when calling portfolio analysis meth-
ods. You can calculate either individual asset parameters (e.g. the expected return from
an asset), or portfolio parameters (e.g. the expected return of the portfolio). Usually you
will be interested more in the analysis functions. Almost all of these functions require the
covariance matrix and/or the expected returns vector. You can obtain them by calling
CovMatrix, respectively ExpArray. Also, when calculating statistical parameters, you can
give the probabilities as parameters or you can use an estimation based on historic rates
of return (see 3.1.1 for details).

The most time consuming part of the analysis is the determination of the efficient fron-
tier (see 3.4). This requires a series of minimizations, which are done using Rosen’s
gradient projection algorithm. Because it is inefficient to do this every time you want
to know the portfolio on the efficient frontier corresponding to a given expected return,
the result is determined by interpolating through a series of points. The interpolation
points must be calculated before a call to EfficientFrontier(double, int) is made. The
method CalculateEfficientFrontier does this. If you are interested instead in only one
point from the efficient frontier, you can use EfficientFrontier(double, double[][],

6Which in our example belongs to the fictitious TradingClass business class.

121

Programmer’s Guide for .NET Chapter 7

double[], int, double). In order to determine the optimum portfolio (according to
Markowitz model) a utility function (indifference curve) must be provided (see 3.5). It
can be given either as a set of interpolation points, or as a polynomial (by specifying
coefficients). Having a utility function and an efficient frontier, you can determine the
set of optimal portfolios (i.e. the set of intersection points between the two curves) using
OptimalPortfolio. If you are interested only in one value you can use OptimalPortfolioMaxExpected
which determines the point in the set with the maximum expected return. The maximum
number of optimal portfolios found is 100. If this number is exceeded, an exception will
be thrown.

We provide a method for calculating the equity portfolio (see 3.6). This also requires
the efficient frontier to be calculated.

Remarks You should be aware that there are two sources of errors: the first is the
optimization procedure, the second is the interpolation. Usually the errors generated by
the interpolation are much bigger than that resulting from the optimization. You can re-
duce the interpolation errors by increasing the number of interpolation points. It is much
harder to control the optimization errors. If you are especially interested in an accurate
result, you can adjust the ‘portal’ parameter to lower values, otherwise this should always
be set between 1E − 3 and 1E − 6. The ‘projtol’ parameter is not the tolerance of the
result, so there are no guarantees that the error will be less than a specific number. Also
the increase in duration of the algorithm does not depend linearly on the value of ‘projtol’,
so a small decrease of it can cause a great increase in time consumption. Generally, the
accuracy of the result depends on the input data. Usually, the more assets are in the
portfolio, the bigger optimization errors are.

7.5 Exceptions

If one of the methods which require the efficient frontier to be calculated is called before
CalculateEfficientFrontier, the exception EfficientFrontierNotCalculatedException

will be thrown.

If one of the methods which require the utility function is called without initializing it,
the exception UtilityFunctionNotInitializedException will be thrown.

If the number of optimum portfolios found is greater than 100, the exception TooManyPortfoliosException

is thrown.

The expected return of a portfolio cannot be greater than the maximum expected re-
turn of the assets. If you want an expected return higher than this, the problem has no
solutions. So, when calling EfficientFrontier with such an expected return, you will get
a NoSolutionException . Also if the range given to CalculateEfficientFrontier contains
any points for which there is no solution, the exception will be raised.

122

Chapter 8

Examples

Within this chapter we illustrate how the Portfolio Component can be applied to solve real
life problems. We provide with this Component examples of two types:

1. QA Examples

2. Custom Examples

8.1 Question and Answer (QA) Client Examples

8.1.1 Overview

Within this folder we offer client examples written using a number of .NET compliant
languages for the .NET Business Components provided within this package. In particular,
for each business method contained within each business Component we provide an example
implemented within C# , VB.NET and C++.NET; which illustrates how functionality
contained within this component can be applied to solve real world problems. In addition,
to these examples we also include custom applications which solve some of the generic
problems which this Component is designed to address.

8.1.2 Structure of QA Examples Directory

By drilling down the QA Client directory structurr you will find the following six directory
levels:

1. Client Level
2. Language Level
3. Business Module Level
4. Business Class Level
5. Example Level
6. Custom Example Level

which have the structure as shown in the following diagrams.

123

Examples Chapter 8

Top Three levels of the QA Directory Structure

(Client Level) (Language Level) (Business Module Level)

QAClients +

|

+ C# ------------------------+

| |

+ VB.NET --+... + ‘Business Module 1’ ----------

| |

+ C++.NET --+... + ‘Business Module 2’ --+...

| |

+ QALibrary.dll + ...

|

+ QALibraryModule.netmodule

|

+ Readme.txt

Bottom Three levels of the QA Directory Structure

(Business Class Level) (Example Level) (Custom Example Level)

--+

|

+ ‘Business Class 1’ --------+

| |

+ ‘Business Class 2’ --+... + ‘BusinessClass’.exe.conf

| |

+ ... + ‘BusinessClass’.cs

|

+ compile.bat

|

+ run.bat

|

+ run_gui.bat

|

+ ‘CustomClient’ -------+ ‘CustomClient’.cs

| |

+ ... + compile.bat

|

+ run.bat

124

Examples Chapter 8

8.1.3 Quick Start Guide

Browse down to the particular client within the business module for the given .NET com-
patible language which you are interested in. Run the compile.bat, script in order to
compile the example and then run the run.bat, script in order to run the example.

8.1.4 Explanation of the QA Directory Structure and its files

1. Client Level

The directory containing the Questions and Answer Examples is named ‘QAClients’.
This directory can be located by using the Readme.html file, which is presented at
the end of the installation process, by selecting:

Run Examples > Run .NET Class Library Examples

The Readme.html file can also be opened from the shortcut:

Start > Programs > WebCab Components > ‘Name of Components Package’ > Readme.html

2. Language Level

Within the ‘QAClients’ folder is the Language level of the QA directory structure.
Within this folder you will find 3 sub-directories: C# , VB.NET and C++.NET;
which contain examples written in each of the .NET languages C# , VB.NET and
C++.NET respectively. Within this folder you will also find the following three files:

� QALibrary and QALibraryModule.netmodule - contain utility function-
ality necessary for running the clients. If you wish to run these examples from
within Visual Studio .NET (for example) then you will need to register this DLL
within your VS.NET project.

� Readme.txt - this Readme file.

As mentioned above within the overview we provide an implementation of each ‘Ques-
tion and Answer’ example as three eqivalent implementations, namely: a C# client,
a VB.NET client and a C++.NET client. Selecting one of the three folders C# ,
VB.NET or C++.NET; in order to view the client implementated within the corre-
sponding language.

3. Business Module Level

After selecting one of the sub-folders C# , VB.NET, C++.NET at the ‘Language
Level’ (see (2) above) you will enter a folder which contains a sub-folder for each of
the modules contained within this component package. The modules are convenient
collections of business classes containing the business functionality offered by this
component. Each module has a sub-folder which contains the ‘Question and Answer’
examples of each method of the classes which it contains.

125

Examples Chapter 8

4. Business Class Level

At the business class level under the module level we are presented with one sub-folder
for each of the classes within the business module. Each of these folders contains the
files of the examples for each of the methods contained with the respective class.

5. Example Level

At the Example level you will be presented with the files which allow you to compile
and then run the examples of the application of the Business methods of the respec-
tive class. The files within this directory which constitute the Client example are as
follows:

� Source Code File(s) - Depending on the .NET compatible language selected
at the ‘Language Level’ this folder will contain a source code file(s) with the
extension .cs, .vb or .cpp corresponding respectively to the C# , VB.NET or
C++.NET client.

� Configuration File - Apart from the main source code file the folder will
also contain a configuration file with the extension .conf, this file contains the
information concerning the location of the DLLs which the example will require.
You may add more references as needed but you should not remove the references
already contained within this file.

� Compile Batch File - Assuming that you have access to the relevant C# ,
VB.NET or C++.NET compiler the compile batch file (compile.bat) once run
will compile the client example from the folders source code file. Below we
include some remarks on how to obtaining suitable .NET compilers in order to
be able to compile and then run these C# , VB.NET and C++.NET examples.

� Run Batch File - The run batch file (run.bat) will run the examples executable
file (exe) which is generated from the compilation of the source code file. If the
example over runs your console screenful then press space in order to page down.

6. Custom Example Level

At the Custom Example level you will find a source code file containing the im-
plementation of the Application which addresses a typical question for which the
Component is designed. The source code has a linear structure with full inline com-
mentary. By just running the compile and then run scripts contained within this
directory you will be able to solve to given problems view the results obtained. The
files contained within each Custom Client Example directory are as follows:

� Source Code File(s) - Depending on the .NET compatible language selected
at the ‘Language Level’ this folder will contain a source code file(s) with the
extension .cs, .vb or .cpp corresponding respectively to the C# , VB.NET or
C++.NET client.

126

Examples Chapter 8

� Compile Batch File - Assuming that you have access to the relevant C# ,
VB.NET or C++.NET compiler the compile batch file (compile.bat) once run
will compile the client example from the folders source code file. Below we
include some remarks on how to obtaining suitable .NET compilers in order to
be able to compile and then run these C, VB.NET and C++.NET examples.

� Run Batch File - The run batch file (run.bat) will run the examples executable
file (exe) which is generated from the compilation of the source code file. If the
example over runs your console screenful then press space in order to page down.

8.1.5 Remarks on .NET compilers

1. Required compilers and how to test for them

In order to compile the C# , VB.NET or C++.NET examples you will require for
each of these .NET languages a suitable compiler. The easiest way in which to test
whether you have access to the three main .NET language compilers at your com-
mand prompt is to type the follow commands at the command line:

csc - Invokes the C# compiler
vbc - Invokes the VB.NET compiler
cl - Invokes the C++.NET compiler

2. How to obtain the required compilers

Compilers for the C# and VB.NET .NET compatible languages are provided within
the .NET SDK v1.0 (or higher). At the time of writing within the standard Microsoft
.NET SDK the C++ compiler is enabled only as a C compiler.

In order to obtain the C# and VB.NET command line compilers you simply need
to download and install the .NET SDK available from the Micrsoft site. In order
to obtain a fully functional C++.NET compiler you can either download and install
Microsoft’s feeely available and fully functional Visual C++ Toolkit 2003, available
from: http://msdn.microsoft.com/visualc/vctoolkit2003/; or use the C++ compiler
which is provided with Microsoft’s Visual Studio .NET IDE.

8.2 Custom QA Examples

Portfolio theory addresses the very practical aim of trying to get the highest expected
return from a portfolio for a given level of risk. Within this section we detail the custom
examples which we provide with the portfolio components standard QA Example, which
illustrate the application of the Portfolio Component.

127

http://msdn.microsoft.com/visualc/vctoolkit2003/

Examples Chapter 8

8.2.1 Markowitz Custom Clients

Within this section we describe the custom examples which we provide for the Morkowitz
class. The source code for these examples can be found within sub-directories of the
directory:

Clients > QAClients > “Language/Technology” > Portfolio > Markowitz

where ”Language/Technology” refers the program language and/or technology (for ex-
ample Java, C, Delphi, EJB, COM, Web services, CORBA etc) by which the example are
written in.

1) AbsoluteRelative

This example demonstrates that whether the absolute or relative values are used for the
source data of the historical returns the Portfolio Component will yield the “same” results
in terms of selecting the optimal portfolio.

In particular, we will show the independence of the Weights of the Portfolio found on
the Efficient Frontier for a given expected return. Moreover, we will show that whether we
use absolute or relative values for the historical returns the weights of the optimal portfolio
found are identical.

One reason for this independence is that the units in which the historical returns are given
does not effect the weights of the portfolio of the Efficient Frontier, include the weights of
the optimal portfolio is that asset weights themselves are nit-less’ (in the sense of Measure-
ment Theory). Hence intuitively speaking during the computation of the asset weights the
units are being canceled out with the end result (i.e. the weights) being recording without
an attached unit.

2) Efficient Subdirectory

This example demonstrates how we are able to evaluate a single Portfolio on the Efficient
Frontier. That is, we demonstrate how we are able to find any portfolio of the Efficient
Frontier with only one call to the underlying Rosen’s optimization algorithm.

In instances when we only require to evaluate a few portfolios on the Efficient Frontier
then this direct approach is not only more efficient but also more accurate.

Level of the Precision

Another aspect of this example is that we show how the portfolio found depends on the
precision used. In particular, we find that a precision of 1E-12 (or higher) should be used
in order to assure that the weights of the portfolio are corrects to 2 decimal places.

Historical Values Used

128

Examples Chapter 8

Within this example we use the following relative historical values of five assets histor-
ical returns over the last five periods:

� 1st Asset: 0.03, 0.04, 0.02, 0.05, 0.03

� 2nd Asset: 0.03, 0.040, 0.1, 0.03, 0.035

� 3rd Asset: 0.03, 0.032, 0.033, 0.035, 0.036

� 4th Asset: 0.02, 0.021, 0.021, 0.021, 0.0205

� 5th Asset: 0.02, 0.01, 0.02, 0.015, 0.028

Where the portfolios on the Efficient Frontier can be constructed with respect to the
following asset weight constraints:

� 1st Asset Weight Constraints: Lower bound of = 0.05, Upper bound = 0.2

� 2nd Asset Weight Constraints: Lower bound = 0.05, Upper bound = 1

� 3rd Asset Weight Constraints: Lower bound = 0.05, Upper bound = 1

� 4th Asset Weight Constraints: Lower bound = 0.05, Upper bound = 0.5

� 5th Asset Weight Constraints: Lower bound = 0.05, Upper bound = 1

3) Optimal Subdirectory

With this example we select the Optimal Portfolio in accordance with Markowtiz Theory
using an Investors (risk/reward) Utility Function. Here the returns are given in absolute
terms.

Suppose you have the historic rates of return for 5 assets given in the table:

Month Asset1 Asset2 Asset3 Asset4 Asset5
January 100 75 120 50 150
February 105 76 120 50 150
March 107 76.5 130 50 145
April 110 77 130 51 135
May 90 70 125 45 120
June 75 71 105 46 110
July 80 73 105 46 110
August 80 75 110 47 170
September 90 77 120 48 200
October 97 79 120 49 200
November 105 78 125 50 205
December 115 77 135 51 210

129

Examples Chapter 8

Problem: What are the asset weights of the optimal portfolio which has an expected
return of 120?

That is, what are the weights of the 5 assets such that the risk of the resulting portfo-
lio is minimized and the return is equal to 120. We have chosen to use a tolerance of 1E−3.

Solution: The reqwuired weights are:

Asset weight
Asset1 0
Asset2 0.01067
Asset3 0.98764
Asset4 0
Asset5 0.00169

For further details we refer the reader to the source code and in-line documentation of this
example.

4) Optimal2 Subdirectory

Within this example we will consider the construction the efficient frontier for the portfolio
which can be constructed from three managed fund with returns of 12 periods of:

� Fund 1: 1.14, 0.47, 0.84, 0.93, 1.1, 0.82, 0.63, 0.72, 0.8, 1.06, 0.79, 0.78

� Fund 2: -6.06, -4.15, 1.37, 4.29, 1.37, -1.21, 4.11, 2.19, -3.71, 1.18, -1.25, 1.29

� Fund 3: -1.7, -4.9, 3.64, 4.14, 1.14, 1.66, 4.18, 4.01, -0.11, 4.24, -2.26, 4.33

(The above returns are given in percentage form (i.e. 1 = 1 percent = 0.01))

Within this example we will construct the efficient frontier and then ead off’ the opti-
mal portfolio for a given level of return. We will then construct the optimal portfolio for
three different investors with relatively a low, medium and high risk tolerance.

Each utility function for the three investors is given on five points represented a pairs
risk and reward points on the utility curve. The three investors correspond to:

� Low Risk Tolerance Investor

� Medium Risk Investor

� Higher Risk Investor

The above returns and risk correspond to monthly expected return and corresponding risk
with the three investors are prepared to accept.

130

Examples Chapter 8

5) Optimal4Risk4Return Subdirectory

Within this client we apply the Markowitz Theory to construct the portfolio which has:

� The lowest risk for a given expected return (i.e. expected performance level)

� The highest expected return (i.e. performance) for a given level of risk

for six investment funds where each of the funds historical monthly returns is known over
the past 3 years (approx.).

Remark In order to address the first problem it will be sufficient to apply methods from
the Markowitz class, in order to solve for risk we will need to use in addition functionality
from the SolveFrontier class.

6) Optimal4Risk4Return50Funds Subdirectory

Within this client we apply the Markowitz Theory to construct the portfolio which has:

� The lowest risk for a given expected return (i.e. expected performance level)

� The highest expected return (i.e. performance) for a given level of risk

for 50 investment funds where each of the funds historical monthly returns is known over
the past 3 years (approx.).

The historical values of the funds is given within a array of dimension 2 where the first
elements consists of 50 members which state the returns in Jan 2001, the second element
the return in Feb 2001, and so on.

Remark In order to address the first problem it will be sufficient to apply methods
from the Markowitz class, in order to solve for risk we will need to use in addition func-
tionality from the SolveFrontier class.

WARNING: This example will take several minutes to run.

7) Optimal4Risk4Return200Funds Subdirectory

Within this client we apply the Markowitz Theory to construct the portfolio which has:

� The lowest risk for a given expected return (i.e. expected performance level)

� The highest expected return (i.e. performance) for a given level of risk

for 200 investment funds where each of the funds historical monthly returns is known over
the past 3 years (approx.).

The historical values of the funds is given within a array of dimension 2 where the first

131

Examples Chapter 8

elements consists of 200 members which state the returns in Jan 2001, the second element
the return in Feb 2001, and so on.

Remark In order to address the first problem it will be sufficient to apply methods
from the Markowitz class, in order to solve for risk we will need to use in addition func-
tionality from the SolveFrontier class.

WARNING: This examples will take more than an hour to complete on a desktop ma-
chine.

8) EfficientAlternative Subdirectory

Within this example we evaluate using the same historical values as within the example
contained within the folder ‘Efficient’ and evaluate the portfolio on the Efficient Frontier.
The difference between this example and the example contained within the ‘Efficient’ folder
in that here we do not use the direction approach of evaluating the portfolio, but use the
approach via the evaluate of the Efficient Frontier at a number of interpolation points.

The rationale for including this examples is to allow the comparison between these two ap-
proaches to the evaluation of the optimal portfolio for a given values of the expected return.

Historical Values Used

Within this example we use the following relative historical values of five assets histor-
ical returns over the last five periods:

� 1st Asset: 0.03, 0.04, 0.02, 0.05, 0.03

� 2nd Asset: 0.03, 0.040, 0.1, 0.03, 0.035

� 3rd Asset: 0.03, 0.032, 0.033, 0.035, 0.036

� 4th Asset: 0.02, 0.021, 0.021, 0.021, 0.0205

� 5th Asset: 0.02, 0.01, 0.02, 0.015, 0.028

Where the portfolios on the Efficient Frontier can be constructed with respect to the
following asset weight constraints:

� 1st Asset Weight Constraints: Lower bound of = 0.05, Upper bound = 0.2

� 2nd Asset Weight Constraints: Lower bound = 0.05, Upper bound = 1

� 3rd Asset Weight Constraints: Lower bound = 0.05, Upper bound = 1

� 4th Asset Weight Constraints: Lower bound = 0.05, Upper bound = 0.5

� 5th Asset Weight Constraints: Lower bound = 0.05, Upper bound = 1

132

Examples Chapter 8

8.2.2 Capital Market Custom Clients

Within this section we describe the custom examples which we provide for the Capital
Market class. The source code for these examples can be found within sub-directories of
the directory:

Clients > QAClients > ”Language/Technology” > Portfolio > CapitalMarket

where ”Language/Technology” refers the program language and/or technology (for ex-
ample Java, C, Delphi, EJB, COM, Web services, CORBA etc) by which the example are
written in.

1) CashConstraints Subdirectory

Within this example we illustrate how constraints may be placed onto the levels of the
cash held or borrowed to the market by an optimal portfolio constructed in accordance
within the Capital Asset Pricing Model. We show how the resulting continuous range of
the values of the expected return and total risk can then be deduced which identify which
optimal portfolios can be selected when the cash level constraints are observed.

2) Equity Subdirectory

This example illustrates the construction in accordance with the Capital Asset Pricing
Model (CAPM) of the Optimal Portfolio on the CML where constraints are placed on the
asset weights from which the portfolios can be constructed.

This example illustrates the application of the Capital Asset Pricing Model (CAPM) func-
tionality implemented within the class CapitalMarket.

In particular, we seek the solution to the following question:

What is the weighting of the Market Portfolio and risk of the optimal portfolios with
respect to the CAPM which can be constructed from 5 assets with historical returns of:

Time interval Asset1 Asset2 Asset3 Asset4 Asset5
1st interval 500 500 300 200 250
2nd interval 450 450 320 210 270
3rd interval 500 400 330 215 300
4th interval 550 300 350 210 280
5th interval 600 350 360 205 290

where the weights of each of the assets of the portfolio constructed must lie between 0.1
and 0.5, that is, each asset can have a minimum weights in 10 percent and a maximum
weighting of 50 percent with the constructed portfolio.

Question: What if the Market Portfolio’s risk and expected return? In accordance, with

133

Examples Chapter 8

respect to the CAPM what is the optimal portfolios (i.e. lowest risk with a given expected
return) which has an expected absolute return of 300 and 210?

Overview of Approach

Once the source data is given we we provide to find the constrained optimal portfolio
be following the below steps:

� Instantiate the Capital Market (main class) and Asset Parameter classes which pro-
vide the functionality required.

� Evaluate the covariance and expected returns of the collection of assets from which
the portfolios can be constructed. This is done using two auxiliary methods from the
Asset Parameters class.

� Set the constraints on the asset weights from which the portfolios are constructed.

� We then evaluate the Efficient Frontier on the entire range on which it exists and set
its interpolation points to a private field.

� Next we construct the Market Portfolio.

� We then evaluate the risk and expected return of the Market Portfolio which will be
used within the follow calculations.

� In order to find the optimal portfolios with respect to the CAPM we evaluate the
portfolios of the CML with an expected return of 210 and 300. That is, we evaluate
the weighting of the market portfolio and the risk of each of the portfolios.

Historical Source Data

The source data is we use here are the historical values of the 5 assets returns from which
the portfolios on the Efficient Frontier can be constructed measured over the last 5 periods.

� 1st Asset Returns: 500, 450, 500, 550, 600

� 2nd Asset Returns: 500, 450, 400, 300, 350

� 3rd Asset Returns: 300, 320, 330, 350, 360

� 4th Asset Returns: 200, 210, 215, 210, 205

� 5th Asset Returns: 250, 270, 300, 280, 290

Business Classes used

Within this example we use the following business classes:

� Capital Market - The CapitalMarket class contain the core functionality within our
implementation of the CAPM.

134

Examples Chapter 8

� Asset Parameters - The Asset Parameters class offers a number of utility methods
which assist in the evaluation and estimation of the parameters of the methods within
the Capital Market class.

Solution Found:

After having calculated the efficient frontier, we find the optimum market portfolio which
provide the highest expected return per unit of risk. The market portfolios asset weights
are as follows:

weight
Asset1 0.08605
Asset2 0.08125
Asset3 0.0454
Asset4 0.7873
Asset5 0

Where the market portfolio has a risk of 2.42057 and has an expected return of 256.07759.

Using the market portfolio we are able to construct through either borrow cash from
the market to buy more units of the market portfolio or though lending to the market; a
portfolio that has any return greater than the return from cash.

Action Require to obtain a return of 300: The method weightCML in order to obtain
a return of 300 returns 1.71912. This number is greater than 1, which means that a sum
greater than total investor’s wealth must be invested in the equity portfolio in order to
have a return of 300. That is, 0.71912 of the initial sum will be borrowed at the market’s
rate and invested within the optimal portfolio. In this instance the risk of the portfolio
increases to 4.16127.

Action Require to obtain a return of 210: If the investor only requires an expected
return of 210, then only 0.24559 of the investors equity needs to be invested within the
optimal portfolio. With the remained being lend to the market at the prevailing market
rate of 195. In this instance the investors risk of the portfolio has been reduced to 0.59447.

3) SelectOptimal Subdirectory

This example illustrates the application of the Capital Asset Pricing Model (CAPM) func-
tionality implemented within the class CapitalMarket.

In particular, we seek the solution to the following question:

What is the weighting of the Market Portfolio and risk of the optimal portfolios with
respect to the CAPM which can be constructed from the assets:

� Fund 1: Historical Returns = 0.03, 0.04, 0.02, 0.05, 0.03 per year

� Fund 2: Historical Returns = 0.04, 0.045, 0.03, 0.03, 0.035 per year

135

Examples Chapter 8

� Fund 3: Historical Returns = 0.02, 0.021, 0.021, 0.021, 0.0205 per year

� Fund 4: Historical Returns = 0.02, 0.021, 0.021, 0.021, 0.0205 per year

� Fund 5: Historical Returns = 0.025, 0.027, 0.03, 0.028, 0.029 per year

where the prevailing market rate at which cash can be lent or borrowed is 1.95 percent per
year?

8.2.3 Asset Parameters Custom Clients

Within this section we describe the custom examples which we provide for the Asset
Parameter class. The source code for these examples can be found within sub-directories
of the directory:

Clients > QAClients > ”Language/Technology” > Portfolio > AssetParameters

where ”Language/Technology” refers the program language and/or technology (for ex-
ample Java, C, Delphi, EJB, COM, Web services, CORBA etc) by which the example are
written in.

1) ForwardLooking Sub-directory

Suppose you have the following data regarding 3 securities.

State 1st Asset 2nd Asset 3rd Asset Probability
1st state 100 120 200 0.1
2nd state 120 130 150 0.7
3rd state 130 140 140 0.2

Each cell in this table contains two values: the return of the asset in one of three states,
and the probability of that state occurring.

In our example we evaluate the following:

� The expected variance of each asset:

– for the 1st asset var = 60

– for the 2nd asset var = 29

– for the 3rd asset var = 261

� The expected return for each asset:

– for the 1st asset exp = 120

– for the 2nd asset exp = 131

– for the 3rd asset exp = 153

136

Examples Chapter 8

� The covariance between the 1st and 2nd Asset is: 40

Remark Since the returns of the assets are given as absolute valuee of the expected returns
evaluate will also be given in absolute values rather than in relative (i.e. percentage) terms.

Portfolio constructed with Equal Weighting between the three assets avail-
able

Suppose that you have a portfolio containing equal shares from each of the three As-
sets available. That is, the weighting of each of 1st, 2nd and 3rd asset is 1/3. For this
constructed portfolio we evaluate the following properties:

� The expected return which is evaluated to be: 134.66667

� The portfolio’s risk which is evaluated to be: 2.21108

� The variance of returns which is evaluated to be: 4.88889

8.2.4 Two Asset Portfolio Custom Clients

Within this section we describe the custom examples which we provide for the Two Asset
Portfolio class. The source code for these examples can be found within sub-directories of
the directory:

Clients > QAClients > ”Language/Technology” > Portfolio > TwoAssetPortfolio

where ”Language/Technology” refers the program language and/or technology (for ex-
ample Java, C, Delphi, EJB, COM, Web services, CORBA etc) by which the example are
written in.

1) OptimalDiversification Sub-directory

Suppose you have two assets, for which you know three possible returns may take place
and you can assign corresponding probabilities for each of these returns taking place in
accordance with the following table:

State Asset1 Asset2 Probability
1st state 300 500 0.5
2nd state 310 400 0.2
3rd state 330 550 0.3

Problem:

Say the first asset represents a portfolio which is held and the second asset represents
an asset which the portfolio manager wishes to add to the portfolio such the optimal ef-
fects (i.e. minimize the risk) of diversification from the purchase is felt. The question to
address here now many of shares of Asset 2 should the portfolio manager buy in order to

137

Examples Chapter 8

acheive this?

Method Used:

Our implementation which can be found within the OptimalDiversification folder when
run finds the following answers. Within this implementation we first evaluate the standard
deviation of each of the two assets before evaluating the vovariance from which we are able
to evaluate the optimal weight using:

:TwoAssetPortfolio:weight2MinimizeRisk:

For further detail we refer the reader to the code of this example or order to see exactly
how these solutions we arrived at.

8.2.5 Optimal portfolio

If you have the statistical parameters for a set of securities (the covariance matrix and the
vector of expected returns), you can calculate the efficient frontier. Then, given a utility
function, you can find what is the set of optimal portfolios in the sense of Markowitz model.

We use the same historic rates of return as in the previous example. The utility func-
tion is given as a set of interpolation points:

1 2 3 4 5 6 7
x 0 40 60 80 100 120 140
y 0 6.0 6.4 7.0 14.5 22.0 29.2

There are 2 optimal portfolios:

Portfolio 1
Asset1 0
Asset2 0
Asset3 0.269
Asset4 0
Asset5 07309

Modifying the Utility Function: You can change the utility function at any moment by
calling one of the initialization functions. Then, you can calculate the new set of optimal
portfolios. Suppose that you have a polynomial utility function:

ut(x) = 0.00117 ∗ x2 − 0.0443 ∗ x

138

Examples Chapter 8

Again, we find 2 optimal portfolios:

Portfolio 1 Portfolio 2
Asset1 0 0
Asset2 0.6327 0.0022
Asset3 0.0004 0.7769
Asset4 0.3667 0
Asset5 0 0.2207

8.3 Database Example with JDBC Mediator

The Database Example is located inside the Client/Portfolio/DatabaseExample directory.
This examples is provided in order to detail how this component may be used with DBMS’s.
Before being able to run this examples you will need to complete the following steps:

1. Installing our Tables (MySQL Only)
In order to create the database structure from which you are able to load the output
results, you will need to run the ‘create.sql’ scripts in the ‘Data’ subdirectory. Open
the MySQL prompt from the ‘Data’ subdirectory and:

� Select (or create and then select) a database you can spare for a table named
HISTORICAL RETURNS. For example, if you have decided using the ‘test’
database, you would optinally type the SQL command to create it (unless it
already exists):

CREATE DATABASE test;

and then, you would type the following to select it:

USE DATABASE

� Run the ‘create.sql’ SQL script located in the ‘Data’ subdirectory of the current
directory by typing at the same MySQL prompt the following:

source create.sql

If this fails, make sure you have started the MySQL prompt from the ‘Data’
subdirectory (this is where the database files for this example are stored).

2. Configuring the Database Connection
Edit the Java source code file by filling out JDBC information about your database,
such as:

(a) Driver Name (e.g. com.jdbc.mysql.Driver)

(b) JDBC Url (e.g. jdbc:mysql://localhost/test)

(c) Username and Password

139

Examples Chapter 8

If you are unsure whether you have a JDBC Driver for your Database, skip this step
and try running the example with the predefined values. If that fails, you will need
to probably download the latest driver.

3. Running the example

Run the ‘compile’ script (compile.sh for Linux, compile.bat for Windows) to compile
the Java source code, and then the ‘run’ script to see the results.

Uninstalling the Source Data

To delete all the tables used in this example, open the MySQL prompt from the ‘Data’
subdirectory, select the database where you created the tables, and run the following:

source delete.sql

8.4 How to use Markowitz Theory?

Within this section we provide several step-by-step guides on how to perform many of
the most required tasks when apply Markowitz Theory. The methods references within
this section will correspond to methods of the same name found within the Markowitz,
AssetParameters or PerformanceEvaluation class’s.

8.4.1 How to find the portfolio from a collection of assets that
exhibit the lowest risk for a given expected future return?

The problem of finding the optimal portfolio with the lowest risk with a given expected
return from a collection of assets of which the historical performance is known, involves
applying two methods, namely:

� calculateEfficientFrontier - we construct the efficient frontier that consists of a con-
tinuously varying family of portfolios

� efficientFrontier - this method selects a portfolio determined by its expected return
from the family of portfolios on the efficient frontier

Constructing such a portfolio is the main application of classical Markowitz Theory. That
is, if you take a collection of assets historical performance from which you imply expected
performance. By evaluating the covariance matrix of the assets (see section entitled, Ḧow
to evaluate the covariance matrix?”) and the efficient frontier (see section entitled, Ḧow
to construct the Efficient Frontier?”), you may evaluate the optimal risk by applying the
method:

efficientFrontier(double expectedReturn, int numberOfAssets)

from the Markowitz component.

140

Examples Chapter 8

Remark When we refer to the optimal risk we mean the minimal risk for a given ex-
pected return which is the same thing as saying the portfolio which is expected to exhibit
the smallest standard deviation of its value for a given level of expected return.

8.4.2 How to construct the Efficient Frontier?

The Efficient Frontier is constructed by applying the following Markowitz class method:

public void calculateEfficientFrontier(double minimumExpectedReturn,

double maximumExpectedReturn,

double[][] covarianceMatrix,

double[] expectedReturns,

int numberInterpolationPoints,

double precision)

The developer will need to provide the correct input parameters starting with the fol-
lowing two:

double minimumExpectedReturn
double maximumExpectedReturn

The minimum and maximum expected returns can be taken to be the minimum and
maximum historical returns from the best performing and worst performing assets within
the given collection which we will use to construct the optimal portfolio. Since these two
extremes certainly suffice (i.e. allow all potential optimal portfolio’s to be considered), and
in the general case these extreme values may even themselves represent optimal portfolios,
which in fact only be the case if the covariance matrix is the Identity matrix.

double[][] covarianceMatrix

We apply the method ‘covarianceMatrix’ within the AssetParameters class to the database
table that contains the assets historical values from which the portfolio will be constructed.
The historical data we are provided with should be stored within a database table in order
to apply this method directly.

double[] expectedReturns

Please see the section entitled ”How to estimate the expected return for the historical
returns?”

int numberInterpolationPoints, double precision

141

Examples Chapter 8

The input value’s for these parameters is just a matter of balancing speed and accuracy.

Remark The Markowitz class uses highly optimized algorithms to construct the Effi-
cient Frontier that leads to the construction of the optimal risk-return portfolio. This
allows the optimal Portfolio to be constructed in one or two minutes for 100+ assets using
a commodity desktop PC. Saving the end user time and offering the convenience of being
able to use a desktop PC equipment rather than specialist server hardware.

8.4.3 How to estimate the expected return from the historical
returns?

Say your source data is the ‘historical’ monthly performance of a given fund. If we assume
that the historical returns of this fund will be closely related to the future expected returns.
Then we will be able to estimate the future expected returns using the method:

expectedReturn(double[])

from the AssetParameters class.

Further Discussion

Here as in all estimates of the fluctuation of the price (or risk) there will always be two
types of risk related to the application of the model. Namely the market risk itself and the
risk that the market risk (or structure) will change. The success of any model will depend
on its ability to adapt to changes in the market dynamics.

Towards this end we offer a number of approaches to estimating the expected returned
which one could use for a variety of differing market dynamics. These procedures are
contained within the AssetParameter class and include:

� Arithmetic Historical average - Take the historical return over a given period and take
the expected future return to be the arithmetic average of the historical values. Say
we take the last 6 monthly historical returns, then the probability of the market states
which deliver each of these 6 historically recorded returns over the last 6 months is
1
6
.

� ARCH Type Model - This is an averaging procedure which attaches more weight to
more recently measured values. For example, we could take:

expectedReturn =
∑

(exp(−i)historicalReturn[i])

Say we take the last 6 monthly value again in order to estimate the expected future
return. The probability of the market states that delivered each of the return found
in the last six months is:

exp(−i)∑
i exp(i)

142

Examples Chapter 8

for i = 0, . . . , 6.

Our implementation of the ARCH model assumes that the underlying asset has
a drift in accordance to the characteristic line. Under this assumption the ARCH
model provides an effective model for assets, which depend linearly on stocks or stock
indexes.

Remark Predictive models of ARCH/GARCH type or models involving technical or
fundamental analysis are not prescriptive and hence will depend heavily on the choices of
the parameters the user makes. Saying this, these models enable the user to ensure that
whatever the variables used the resulting model will exhibit certain qualitative properties
which are embodied within the model itself.

8.4.4 How can I measure the performance characteristics of a
portfolio?

One of the core principles of ‘Markowitz Theory’ (and CAPM), is that investors will only
accept higher risk for a higher expected return. Therefore, since we are working within
this framework it is only natural to consider the risk adjusted performance of a portfolio
and related methods thereof. Within this product we have including methods by which
the risk adjusted and non-risk adjusted return can be evaluated.

Risk Adjusted Performance

In order to evaluate the risk adjusted return we use methods from the PerformanceEvalu-
ation class. In particular, we use one of the following two methods:

� Sharpes Ratio - This performance measurement parameter is the most widely used.
The higher the value the better the portfolios risk return profile is said to be. To
evaluate Sharpes Ratio use the method SharpesRatio.

� Treynors Ratio - This measure takes into account the systematic risk (or beta) and
the average return when assessing the overall risk adjusted return of the portfolio.
To evaluate Treynor’s performance measure use the method treynorsMeasure.

Non-risk adjusted Performance

The non-risk adjusted performance of a portfolio can be evaluated by using the methods
Total Return and Portfolio Return within the performance evaluation class. The Portfo-
lio Return method evaluates the arithmetic return of the portfolio over a period of time
where the return of each asset over the period and its initial portfolio weight is known.
The total return method allows you to evaluate the return form the portfolio when cash
disbursements or dividends are taken into account.

Even though these measures are not risk adjusted the user can still use then in injunction

143

Examples Chapter 8

with a measure of the risk of the portfolio in order to get a better feel for a portfolios
overall characteristics. The risk of a portfolio, can be evaluated by the method:

portfolioRisk(double[] weight, double[][] covarianceMatrix)

which is contained within the portfolio class.

144

Chapter 9

Guide to WebCab Components

9.1 The Company

WebCab is a privately owned British company that has built business solutions since its
inception in 1999. We continue to refine and develop our Mathematical and Financial
Framework which we have implemented on the Office, J2SE, J2EE, Delphi, COM and
.NET platforms.

9.2 Presentation of Products

Our aim is to provide good quality, useful information to help you decide which component
best suits your development needs. WebCab is committed to honesty and realism when
presenting our products. In order to achieve this a detailed, clear and factual style for
presentation is adopted within our documentation and marketing material.

9.3 Supported Clients, IDEs, Containers and DBMSs

By supporting all major development, server and client side technologies we preserve the
developers flexibility in making tool and architecture decisions. In particular, each product
contains detailed examples and advice concerning the integration and use of our modules
within existing development tool and infrastructure platforms. In short, our documenta-
tion provides the information that the developer needs to get their applications up and
running as quickly and as easily as possible.

We detail exactly how the developer can use the .NET Component, COM Component
and XML Web service contained within this product with the following technologies:

� Client containers - Internet Explorer, Mozilla, Microsoft Office

� IDEs - Microsoft’s Visual Studio .NET (incl. Visual C.NET, Visual Basic .NET,
Visual C++.NET), Microsoft’s Visual Studio 6 (incl. Visual C++, Visual Basic),

145

Guide to WebCab Components Chapter 9

Borland’s C++ Builder (incl. C++ 2005, C++BuildX), .NET Framework SDK,
Office’s Visual Basic Editor

� Client Side Technologies - Application Clients, ASP.NET, C#, VB.NET, C++.NET

� XML Web services - Implemented in C#, VB.NET

� DBMS - Oracle, IBM DB2, SQL Server, Sybase, MySQL

� Platforms - Windows 2003/XP/2000/NT/9x

For these technologies we include all installation scripts and template examples which will
help the developer quickly and easily assemble their multi-tier enterprise application.

9.4 Transparent Functionality

All technical and business intelligence incorporated within our products is described within
the associated documentation. This allows the developer to see the nature of the method-
ology implemented within our proprietary algorithms.

9.5 Company Culture and Activity

WebCab Components is focused solely on the production of high quality software modules
within our Financial and Mathematical Framework. The WebCab team contains a wide
range of expertise and experience from the academic, investment banking and software
development worlds.

Within the company there exists significant internal competitive pressures with constant
peer review and evaluation, resulting in higher quality products, which adhere to high
professional standards and offer extended functionality.

9.6 Product Life cycle

We continuously add value to our products by evolving them according to new .NET
Framework specifications, customer feedback and market demands. We give particular
emphasis to incorporating our clients suggested modifications and additions into our prod-
uct development cycle.

9.7 Support, Warranty and Upgrades

WebCab warrants that each component will perform substantially in accordance with the
accompanying written material. We provide with all our products without charge sixty
(60) days product support services including fixing bugs, compatibility issues and other

146

Guide to WebCab Components Chapter 9

technical support issues.

All maintenance updates (including service packs) will be distributed free of additional
license cost.

Dr Ben Fairfax

Founder and CEO

WebCab Components - From Developer, To Developer

.NET and all .NET-based marks are trademarks or registered trademarks of Microsoft Corporation,

Inc. in the U.S. and other countries.

147

	Preface
	Introduction
	Product Description
	Overview
	Details

	Package Details
	Prerequisites and Compatibility
	System Requirements
	Compatibility

	Where do I Start?
	What Type of User Are You?
	What Do I Need to Install and Where Can I Get It?
	Installing the IIS Web server
	What Do I Need if I am Using Windows 2003?

	Deploying the .NET Service
	Deploying a Component
	Deploying an XML Web Service

	Using the DLLs inside an IDE
	Using the DLL within a Visual Studio .NET project
	Using the DLL within a Borland's C# Builder project

	Client Examples
	Running the Console Client Example
	ASP.NET Client Example
	XML Web service examples

	Testing the Component
	Accessing the Online ASP.NET Demo
	Online XML Web service examples
	Using .NET Web Service Studio

	Mathematical Documentation
	Assumptions, Questions, Functionality and Problems
	Assumptions of Markowitz Theory
	Assumptions of Capital Asset Pricing Model (CAPM)
	What problems do these Models address
	Range of Functionality contained within the classes
	Problems with the Application of the Markowitz Theory and CAPM

	Preliminaries and Auxiliary classes
	Choices in Approach and other issues
	Basic Formulae for the Return, Covariance, Correlation and Risk

	Expected Return and Risk from a Portfolio with two Assets
	Motivation
	Formulation for a Portfolio of two assets
	Minimum risk of a portfolio with two assets

	Markowitz Theory
	Overview of Markowitz Theory Implemented
	Construction of the Efficient Frontier
	Constraints effect on the range of the Efficient Frontier
	Consistency of the Assets and Effects on the Efficient Frontier
	Selecting the Optimal Portfolio
	Discovering the Investors risk - return profile
	Examples of selecting the Optimal Portfolio from the Investors Utility Function

	Capital Asset Pricing Model (CAPM)
	Overview
	Nature of the Capital Asset Pricing Model (CAPM)
	Applying the CAPM
	Summary of the CAPM
	Putting constraints on the level of borrowing and lending

	Performance Evaluation
	Comparing the Sharpe and Treynor Performance Measures

	Further and Supplementary Reading
	Supplementary Reading
	Further Reading

	Programmer's Guide for Microsoft Office
	Developing with VBA from Office
	Open the Visual Basic Editor
	Add a Code Module
	Declare a Subroutine
	Add a Reference to This Product
	Declare a Class Instance Variable
	Create a Class Instance
	Call a Class Method
	Display the Method Result
	Run the Subroutine
	A Generic VBA Example for Office

	Integrating with Microsoft Excel
	Open the Visual Basic Editor
	Add a Code Module
	Declare a Function
	Add a Reference to This Product
	Declare a Class Instance Variable
	Create a Class Instance
	Call a Class Method
	Store the Method Result as a Function Return Value
	Insert the Function in your Worksheet

	Programmer's Guide for Visual Studio 6
	Developing with Visual Basic 6
	Add a Reference to This Product
	Declare a Class Instance Variable
	Create a Class Instance
	Call a Class Method

	A specific Visual Basic Example
	Developing with Visual C++ 6
	Open a New or Existing Project
	Add All COM Specific 'include' Declarations
	Call "CoInitialize"
	Import the Type Library for this Product
	Connect to a COM Server
	Declare the Parameter Types and Values
	Declare the Return Type
	Call the Method
	Call "CoUninitialize"
	A Generic Visual C++ Example

	Programmer's Guide for Borland C++ Builder
	Developing with Borland C++ Builder
	Open a New or Existing Project
	Add all COM Specific "Include" Declarations
	Call "CoInitialize"
	Create a Class Instance
	Obtain a Method ID
	Declare the Parameter Values and Types
	Declare the Return Type
	Call the Method
	Call "CoUninitialize"
	A Generic Borland C++ Builder Example

	Programmer's Guide for .NET
	Developing with .NET Class Libraries
	Stand-alone C# .NET Applications

	Developing with XML Web Services
	Deploying the XML Web Services
	Writing XML Web Service Clients
	Writing Console XML Web Service Clients
	Importing Web services into Visual Studio .NET projects

	Connecting to a Database with our .NET Libraries
	Overview
	The ADO Mediator

	Portfolio Methods Overview
	Exceptions

	Examples
	Question and Answer (QA) Client Examples
	Overview
	Structure of QA Examples Directory
	Quick Start Guide
	Explanation of the QA Directory Structure and its files
	Remarks on .NET compilers

	Custom QA Examples
	Markowitz Custom Clients
	Capital Market Custom Clients
	Asset Parameters Custom Clients
	Two Asset Portfolio Custom Clients
	Optimal portfolio

	Database Example with JDBC Mediator
	How to use Markowitz Theory?
	How to find the portfolio from a collection of assets that exhibit the lowest risk for a given expected future return?
	How to construct the Efficient Frontier?
	How to estimate the expected return from the historical returns?
	How can I measure the performance characteristics of a portfolio?

	Guide to WebCab Components
	The Company
	Presentation of Products
	Supported Clients, IDEs, Containers and DBMSs
	Transparent Functionality
	Company Culture and Activity
	Product Life cycle
	Support, Warranty and Upgrades

